First-order 'hyper-selective' binding transition of multivalent particles under force

Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2020-05, Vol.32 (21), p.214002-214002
Hauptverfasser: Curk, Tine, Tito, Nicholas B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214002
container_issue 21
container_start_page 214002
container_title Journal of physics. Condensed matter
container_volume 32
creator Curk, Tine
Tito, Nicholas B
description Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles, functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective transition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium. Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective, with respect to variation in the number of ligands and receptors on the two objects. When the force is only applied to particles bound to the surface by one or more ligands, then the transition can become infinitely sharp and first-order-a new binding regime which we term 'hyper-selective'. Force may be imposed by, e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical principle is a step towards 'all or nothing' binding selectivity in the design of multivalent constructs.
doi_str_mv 10.1088/1361-648X/ab6d12
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2341611462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2341611462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-f6256b84fd55f10044a266069a13a46dd822c9ecdfb69a70fb224b3bfba39e1f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMotlb3rmR2uhmb18TJUoovKLhRcBfyuNHIvEwyQv-9U1q7unDuOedePoQuCb4luK6XhAlSCl5_LLURjtAjND9Ix2iOZcXKWtZ8hs5S-sYY85rxUzRjRFYUV9UcvT-GmHLZRwexuP7aDBDLBA3YHH7hujChc6H7LHLUXQo59F3R-6Idm2mtG-hyMeiYg20gFWO37fB9tHCOTrxuElzs52K68_C2ei7Xr08vq_t1aamUufSCVsLU3Luq8mT6jmsqBBZSE6a5cK6m1EqwzptJu8PeUMoNM95oJoF4tkA3u94h9j8jpKzakCw0je6gH5OijBNBCBd0suKd1cY-pQheDTG0Om4UwWoLU23JqS05tYM5Ra727aNpwR0C__TYH7_zcYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2341611462</pqid></control><display><type>article</type><title>First-order 'hyper-selective' binding transition of multivalent particles under force</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Curk, Tine ; Tito, Nicholas B</creator><creatorcontrib>Curk, Tine ; Tito, Nicholas B</creatorcontrib><description>Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles, functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective transition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium. Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective, with respect to variation in the number of ligands and receptors on the two objects. When the force is only applied to particles bound to the surface by one or more ligands, then the transition can become infinitely sharp and first-order-a new binding regime which we term 'hyper-selective'. Force may be imposed by, e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical principle is a step towards 'all or nothing' binding selectivity in the design of multivalent constructs.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab6d12</identifier><identifier>PMID: 31952055</identifier><language>eng</language><publisher>England</publisher><ispartof>Journal of physics. Condensed matter, 2020-05, Vol.32 (21), p.214002-214002</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-f6256b84fd55f10044a266069a13a46dd822c9ecdfb69a70fb224b3bfba39e1f3</citedby><cites>FETCH-LOGICAL-c299t-f6256b84fd55f10044a266069a13a46dd822c9ecdfb69a70fb224b3bfba39e1f3</cites><orcidid>0000-0002-8602-012X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31952055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curk, Tine</creatorcontrib><creatorcontrib>Tito, Nicholas B</creatorcontrib><title>First-order 'hyper-selective' binding transition of multivalent particles under force</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles, functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective transition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium. Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective, with respect to variation in the number of ligands and receptors on the two objects. When the force is only applied to particles bound to the surface by one or more ligands, then the transition can become infinitely sharp and first-order-a new binding regime which we term 'hyper-selective'. Force may be imposed by, e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical principle is a step towards 'all or nothing' binding selectivity in the design of multivalent constructs.</description><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMotlb3rmR2uhmb18TJUoovKLhRcBfyuNHIvEwyQv-9U1q7unDuOedePoQuCb4luK6XhAlSCl5_LLURjtAjND9Ix2iOZcXKWtZ8hs5S-sYY85rxUzRjRFYUV9UcvT-GmHLZRwexuP7aDBDLBA3YHH7hujChc6H7LHLUXQo59F3R-6Idm2mtG-hyMeiYg20gFWO37fB9tHCOTrxuElzs52K68_C2ei7Xr08vq_t1aamUufSCVsLU3Luq8mT6jmsqBBZSE6a5cK6m1EqwzptJu8PeUMoNM95oJoF4tkA3u94h9j8jpKzakCw0je6gH5OijBNBCBd0suKd1cY-pQheDTG0Om4UwWoLU23JqS05tYM5Ra727aNpwR0C__TYH7_zcYk</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Curk, Tine</creator><creator>Tito, Nicholas B</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8602-012X</orcidid></search><sort><creationdate>20200513</creationdate><title>First-order 'hyper-selective' binding transition of multivalent particles under force</title><author>Curk, Tine ; Tito, Nicholas B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-f6256b84fd55f10044a266069a13a46dd822c9ecdfb69a70fb224b3bfba39e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curk, Tine</creatorcontrib><creatorcontrib>Tito, Nicholas B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curk, Tine</au><au>Tito, Nicholas B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-order 'hyper-selective' binding transition of multivalent particles under force</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>32</volume><issue>21</issue><spage>214002</spage><epage>214002</epage><pages>214002-214002</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><abstract>Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles, functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective transition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium. Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective, with respect to variation in the number of ligands and receptors on the two objects. When the force is only applied to particles bound to the surface by one or more ligands, then the transition can become infinitely sharp and first-order-a new binding regime which we term 'hyper-selective'. Force may be imposed by, e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical principle is a step towards 'all or nothing' binding selectivity in the design of multivalent constructs.</abstract><cop>England</cop><pmid>31952055</pmid><doi>10.1088/1361-648X/ab6d12</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8602-012X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2020-05, Vol.32 (21), p.214002-214002
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_2341611462
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title First-order 'hyper-selective' binding transition of multivalent particles under force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-order%20'hyper-selective'%20binding%20transition%20of%20multivalent%20particles%20under%20force&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Curk,%20Tine&rft.date=2020-05-13&rft.volume=32&rft.issue=21&rft.spage=214002&rft.epage=214002&rft.pages=214002-214002&rft.issn=0953-8984&rft.eissn=1361-648X&rft_id=info:doi/10.1088/1361-648X/ab6d12&rft_dat=%3Cproquest_cross%3E2341611462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2341611462&rft_id=info:pmid/31952055&rfr_iscdi=true