High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction

In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation 2019-07, Vol.26 (4), p.1238-1244
Hauptverfasser: Fraga, Edmundo, Zea-Garcia, Jesus D., Yáñez, Armando, De la Torre, Angeles G., Cuesta, Ana, Valcárcel-Fernández, Ricardo, Farré-París, Francesc, Malfois, Marc, Aranda, Miguel A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue 4
container_start_page 1238
container_title Journal of synchrotron radiation
container_volume 26
creator Fraga, Edmundo
Zea-Garcia, Jesus D.
Yáñez, Armando
De la Torre, Angeles G.
Cuesta, Ana
Valcárcel-Fernández, Ricardo
Farré-París, Francesc
Malfois, Marc
Aranda, Miguel A. G.
description In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure range are static as they are easy to design and operate. This is convenient for the study of single‐phase materials; however, powder diffraction quantitative analyses for multiphase systems cannot be performed accurately as a good powder average cannot be attained. Here, the design, construction and commissioning of a cost‐effective spinning capillary cell for in situ powder X‐ray diffraction is reported, for pressures currently up to 200 bar. The design addresses the importance of reducing the stress on the capillary by mechanically synchronizing the applied rotation power and alignment on both sides of the capillary while allowing the displacement of the supports needed to accommodate different capillaries sizes and to insert the sample within the tube. This cell can be utilized for multiple purposes allowing the introduction of gas or liquid from both ends of the capillary. The commissioning is reported for the hydration of a commercial oil well cement at 150 bar and 150°C. The quality of the resulting powder diffraction data has allowed in situ Rietveld quantitative phase analyses for a hydrating cement containing seven crystalline phases. The design, construction and commissioning of a cost‐effective spinning capillary cell is reported for in situ powder X‐ray diffraction for pressures up to several hundred bar. In situ recorded data have been quantitatively analyzed by the Rietveld method.
doi_str_mv 10.1107/S1600577519005150
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_2340048523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340048523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3799-a8d2db0933e5f7512c4a99c6d14fe8d911708071220390ad55c1ae2fdfd02ba73</originalsourceid><addsrcrecordid>eNqFkbtOHDEUhq2IKMCGB0iDLNHQLBzb4_W4jBC3aCUKSBSqkdcXMJqxJ_aM0HZ5hDxjngSPFiJECqpj__r-X-eC0BcCR4SAOL4mCwAuBCeyVMLhA9qZpPmkbb16b6PdnB8AyEJQ9gltM0JFVVVyB3UX_u7-7-8_fbI5j8liFQwu_8F2vU1qmKTc-xB8uMNa9b5tVVpjbdsWu5iwDzj7YcR5HfR9ikOKAf8s_qTWuI-PxiZsvHNJ6cHH8Bl9dKrNdu-5ztD3s9Obk4v58ur88uTrcq6ZkHKuakPNCiRjlrsyHdWVklIvDKmcrY0kREANglAKTIIynGuiLHXGGaArJdgMHW5y-xR_jTYPTefz1LMKNo65oawCqGpOWUEP3qAPcUyhdNdQyhmIRUXrQpENpVPMOVnX9Ml3ZRMNgWa6RfPfLYpn_zl5XHXW_HO8LL8AcgM8-tau309svl3f0rMfHKRkT8itl8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253076428</pqid></control><display><type>article</type><title>High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction</title><source>Wiley Online Library Open Access</source><creator>Fraga, Edmundo ; Zea-Garcia, Jesus D. ; Yáñez, Armando ; De la Torre, Angeles G. ; Cuesta, Ana ; Valcárcel-Fernández, Ricardo ; Farré-París, Francesc ; Malfois, Marc ; Aranda, Miguel A. G.</creator><creatorcontrib>Fraga, Edmundo ; Zea-Garcia, Jesus D. ; Yáñez, Armando ; De la Torre, Angeles G. ; Cuesta, Ana ; Valcárcel-Fernández, Ricardo ; Farré-París, Francesc ; Malfois, Marc ; Aranda, Miguel A. G.</creatorcontrib><description>In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure range are static as they are easy to design and operate. This is convenient for the study of single‐phase materials; however, powder diffraction quantitative analyses for multiphase systems cannot be performed accurately as a good powder average cannot be attained. Here, the design, construction and commissioning of a cost‐effective spinning capillary cell for in situ powder X‐ray diffraction is reported, for pressures currently up to 200 bar. The design addresses the importance of reducing the stress on the capillary by mechanically synchronizing the applied rotation power and alignment on both sides of the capillary while allowing the displacement of the supports needed to accommodate different capillaries sizes and to insert the sample within the tube. This cell can be utilized for multiple purposes allowing the introduction of gas or liquid from both ends of the capillary. The commissioning is reported for the hydration of a commercial oil well cement at 150 bar and 150°C. The quality of the resulting powder diffraction data has allowed in situ Rietveld quantitative phase analyses for a hydrating cement containing seven crystalline phases. The design, construction and commissioning of a cost‐effective spinning capillary cell is reported for in situ powder X‐ray diffraction for pressures up to several hundred bar. In situ recorded data have been quantitatively analyzed by the Rietveld method.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577519005150</identifier><identifier>PMID: 31274449</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Biological activity ; Capillaries ; Capillary pressure ; cement hydration ; Cements ; Commissioning ; Construction costs ; Equipment Design ; high‐pressure equipment ; Hydration ; oil well cement ; Oil wells ; Organic chemistry ; Powder Diffraction - methods ; Pressure ; Rietveld quantitative phase analysis ; Spinning (materials) ; Synchronism ; Synchrotrons ; Temperature ; X-ray diffraction</subject><ispartof>Journal of synchrotron radiation, 2019-07, Vol.26 (4), p.1238-1244</ispartof><rights>International Union of Crystallography, 2019</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3799-a8d2db0933e5f7512c4a99c6d14fe8d911708071220390ad55c1ae2fdfd02ba73</citedby><cites>FETCH-LOGICAL-c3799-a8d2db0933e5f7512c4a99c6d14fe8d911708071220390ad55c1ae2fdfd02ba73</cites><orcidid>0000-0003-4335-4995 ; 0000-0001-5231-1896 ; 0000-0001-8852-5191 ; 0000-0002-8634-2241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600577519005150$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600577519005150$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600577519005150$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31274449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fraga, Edmundo</creatorcontrib><creatorcontrib>Zea-Garcia, Jesus D.</creatorcontrib><creatorcontrib>Yáñez, Armando</creatorcontrib><creatorcontrib>De la Torre, Angeles G.</creatorcontrib><creatorcontrib>Cuesta, Ana</creatorcontrib><creatorcontrib>Valcárcel-Fernández, Ricardo</creatorcontrib><creatorcontrib>Farré-París, Francesc</creatorcontrib><creatorcontrib>Malfois, Marc</creatorcontrib><creatorcontrib>Aranda, Miguel A. G.</creatorcontrib><title>High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure range are static as they are easy to design and operate. This is convenient for the study of single‐phase materials; however, powder diffraction quantitative analyses for multiphase systems cannot be performed accurately as a good powder average cannot be attained. Here, the design, construction and commissioning of a cost‐effective spinning capillary cell for in situ powder X‐ray diffraction is reported, for pressures currently up to 200 bar. The design addresses the importance of reducing the stress on the capillary by mechanically synchronizing the applied rotation power and alignment on both sides of the capillary while allowing the displacement of the supports needed to accommodate different capillaries sizes and to insert the sample within the tube. This cell can be utilized for multiple purposes allowing the introduction of gas or liquid from both ends of the capillary. The commissioning is reported for the hydration of a commercial oil well cement at 150 bar and 150°C. The quality of the resulting powder diffraction data has allowed in situ Rietveld quantitative phase analyses for a hydrating cement containing seven crystalline phases. The design, construction and commissioning of a cost‐effective spinning capillary cell is reported for in situ powder X‐ray diffraction for pressures up to several hundred bar. In situ recorded data have been quantitatively analyzed by the Rietveld method.</description><subject>Biological activity</subject><subject>Capillaries</subject><subject>Capillary pressure</subject><subject>cement hydration</subject><subject>Cements</subject><subject>Commissioning</subject><subject>Construction costs</subject><subject>Equipment Design</subject><subject>high‐pressure equipment</subject><subject>Hydration</subject><subject>oil well cement</subject><subject>Oil wells</subject><subject>Organic chemistry</subject><subject>Powder Diffraction - methods</subject><subject>Pressure</subject><subject>Rietveld quantitative phase analysis</subject><subject>Spinning (materials)</subject><subject>Synchronism</subject><subject>Synchrotrons</subject><subject>Temperature</subject><subject>X-ray diffraction</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtOHDEUhq2IKMCGB0iDLNHQLBzb4_W4jBC3aCUKSBSqkdcXMJqxJ_aM0HZ5hDxjngSPFiJECqpj__r-X-eC0BcCR4SAOL4mCwAuBCeyVMLhA9qZpPmkbb16b6PdnB8AyEJQ9gltM0JFVVVyB3UX_u7-7-8_fbI5j8liFQwu_8F2vU1qmKTc-xB8uMNa9b5tVVpjbdsWu5iwDzj7YcR5HfR9ikOKAf8s_qTWuI-PxiZsvHNJ6cHH8Bl9dKrNdu-5ztD3s9Obk4v58ur88uTrcq6ZkHKuakPNCiRjlrsyHdWVklIvDKmcrY0kREANglAKTIIynGuiLHXGGaArJdgMHW5y-xR_jTYPTefz1LMKNo65oawCqGpOWUEP3qAPcUyhdNdQyhmIRUXrQpENpVPMOVnX9Ml3ZRMNgWa6RfPfLYpn_zl5XHXW_HO8LL8AcgM8-tau309svl3f0rMfHKRkT8itl8M</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Fraga, Edmundo</creator><creator>Zea-Garcia, Jesus D.</creator><creator>Yáñez, Armando</creator><creator>De la Torre, Angeles G.</creator><creator>Cuesta, Ana</creator><creator>Valcárcel-Fernández, Ricardo</creator><creator>Farré-París, Francesc</creator><creator>Malfois, Marc</creator><creator>Aranda, Miguel A. G.</creator><general>International Union of Crystallography</general><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4335-4995</orcidid><orcidid>https://orcid.org/0000-0001-5231-1896</orcidid><orcidid>https://orcid.org/0000-0001-8852-5191</orcidid><orcidid>https://orcid.org/0000-0002-8634-2241</orcidid></search><sort><creationdate>201907</creationdate><title>High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction</title><author>Fraga, Edmundo ; Zea-Garcia, Jesus D. ; Yáñez, Armando ; De la Torre, Angeles G. ; Cuesta, Ana ; Valcárcel-Fernández, Ricardo ; Farré-París, Francesc ; Malfois, Marc ; Aranda, Miguel A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3799-a8d2db0933e5f7512c4a99c6d14fe8d911708071220390ad55c1ae2fdfd02ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological activity</topic><topic>Capillaries</topic><topic>Capillary pressure</topic><topic>cement hydration</topic><topic>Cements</topic><topic>Commissioning</topic><topic>Construction costs</topic><topic>Equipment Design</topic><topic>high‐pressure equipment</topic><topic>Hydration</topic><topic>oil well cement</topic><topic>Oil wells</topic><topic>Organic chemistry</topic><topic>Powder Diffraction - methods</topic><topic>Pressure</topic><topic>Rietveld quantitative phase analysis</topic><topic>Spinning (materials)</topic><topic>Synchronism</topic><topic>Synchrotrons</topic><topic>Temperature</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraga, Edmundo</creatorcontrib><creatorcontrib>Zea-Garcia, Jesus D.</creatorcontrib><creatorcontrib>Yáñez, Armando</creatorcontrib><creatorcontrib>De la Torre, Angeles G.</creatorcontrib><creatorcontrib>Cuesta, Ana</creatorcontrib><creatorcontrib>Valcárcel-Fernández, Ricardo</creatorcontrib><creatorcontrib>Farré-París, Francesc</creatorcontrib><creatorcontrib>Malfois, Marc</creatorcontrib><creatorcontrib>Aranda, Miguel A. G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fraga, Edmundo</au><au>Zea-Garcia, Jesus D.</au><au>Yáñez, Armando</au><au>De la Torre, Angeles G.</au><au>Cuesta, Ana</au><au>Valcárcel-Fernández, Ricardo</au><au>Farré-París, Francesc</au><au>Malfois, Marc</au><au>Aranda, Miguel A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2019-07</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><spage>1238</spage><epage>1244</epage><pages>1238-1244</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure range are static as they are easy to design and operate. This is convenient for the study of single‐phase materials; however, powder diffraction quantitative analyses for multiphase systems cannot be performed accurately as a good powder average cannot be attained. Here, the design, construction and commissioning of a cost‐effective spinning capillary cell for in situ powder X‐ray diffraction is reported, for pressures currently up to 200 bar. The design addresses the importance of reducing the stress on the capillary by mechanically synchronizing the applied rotation power and alignment on both sides of the capillary while allowing the displacement of the supports needed to accommodate different capillaries sizes and to insert the sample within the tube. This cell can be utilized for multiple purposes allowing the introduction of gas or liquid from both ends of the capillary. The commissioning is reported for the hydration of a commercial oil well cement at 150 bar and 150°C. The quality of the resulting powder diffraction data has allowed in situ Rietveld quantitative phase analyses for a hydrating cement containing seven crystalline phases. The design, construction and commissioning of a cost‐effective spinning capillary cell is reported for in situ powder X‐ray diffraction for pressures up to several hundred bar. In situ recorded data have been quantitatively analyzed by the Rietveld method.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>31274449</pmid><doi>10.1107/S1600577519005150</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4335-4995</orcidid><orcidid>https://orcid.org/0000-0001-5231-1896</orcidid><orcidid>https://orcid.org/0000-0001-8852-5191</orcidid><orcidid>https://orcid.org/0000-0002-8634-2241</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2019-07, Vol.26 (4), p.1238-1244
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_proquest_miscellaneous_2340048523
source Wiley Online Library Open Access
subjects Biological activity
Capillaries
Capillary pressure
cement hydration
Cements
Commissioning
Construction costs
Equipment Design
high‐pressure equipment
Hydration
oil well cement
Oil wells
Organic chemistry
Powder Diffraction - methods
Pressure
Rietveld quantitative phase analysis
Spinning (materials)
Synchronism
Synchrotrons
Temperature
X-ray diffraction
title High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90pressure%20and%20%E2%80%90temperature%20spinning%20capillary%20cell%20for%20in%20situ%20synchrotron%20X%E2%80%90ray%20powder%20diffraction&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Fraga,%20Edmundo&rft.date=2019-07&rft.volume=26&rft.issue=4&rft.spage=1238&rft.epage=1244&rft.pages=1238-1244&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577519005150&rft_dat=%3Cproquest_24P%3E2340048523%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253076428&rft_id=info:pmid/31274449&rfr_iscdi=true