High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction
In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure r...
Gespeichert in:
Veröffentlicht in: | Journal of synchrotron radiation 2019-07, Vol.26 (4), p.1238-1244 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1244 |
---|---|
container_issue | 4 |
container_start_page | 1238 |
container_title | Journal of synchrotron radiation |
container_volume | 26 |
creator | Fraga, Edmundo Zea-Garcia, Jesus D. Yáñez, Armando De la Torre, Angeles G. Cuesta, Ana Valcárcel-Fernández, Ricardo Farré-París, Francesc Malfois, Marc Aranda, Miguel A. G. |
description | In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure range are static as they are easy to design and operate. This is convenient for the study of single‐phase materials; however, powder diffraction quantitative analyses for multiphase systems cannot be performed accurately as a good powder average cannot be attained. Here, the design, construction and commissioning of a cost‐effective spinning capillary cell for in situ powder X‐ray diffraction is reported, for pressures currently up to 200 bar. The design addresses the importance of reducing the stress on the capillary by mechanically synchronizing the applied rotation power and alignment on both sides of the capillary while allowing the displacement of the supports needed to accommodate different capillaries sizes and to insert the sample within the tube. This cell can be utilized for multiple purposes allowing the introduction of gas or liquid from both ends of the capillary. The commissioning is reported for the hydration of a commercial oil well cement at 150 bar and 150°C. The quality of the resulting powder diffraction data has allowed in situ Rietveld quantitative phase analyses for a hydrating cement containing seven crystalline phases.
The design, construction and commissioning of a cost‐effective spinning capillary cell is reported for in situ powder X‐ray diffraction for pressures up to several hundred bar. In situ recorded data have been quantitatively analyzed by the Rietveld method. |
doi_str_mv | 10.1107/S1600577519005150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_2340048523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340048523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3799-a8d2db0933e5f7512c4a99c6d14fe8d911708071220390ad55c1ae2fdfd02ba73</originalsourceid><addsrcrecordid>eNqFkbtOHDEUhq2IKMCGB0iDLNHQLBzb4_W4jBC3aCUKSBSqkdcXMJqxJ_aM0HZ5hDxjngSPFiJECqpj__r-X-eC0BcCR4SAOL4mCwAuBCeyVMLhA9qZpPmkbb16b6PdnB8AyEJQ9gltM0JFVVVyB3UX_u7-7-8_fbI5j8liFQwu_8F2vU1qmKTc-xB8uMNa9b5tVVpjbdsWu5iwDzj7YcR5HfR9ikOKAf8s_qTWuI-PxiZsvHNJ6cHH8Bl9dKrNdu-5ztD3s9Obk4v58ur88uTrcq6ZkHKuakPNCiRjlrsyHdWVklIvDKmcrY0kREANglAKTIIynGuiLHXGGaArJdgMHW5y-xR_jTYPTefz1LMKNo65oawCqGpOWUEP3qAPcUyhdNdQyhmIRUXrQpENpVPMOVnX9Ml3ZRMNgWa6RfPfLYpn_zl5XHXW_HO8LL8AcgM8-tau309svl3f0rMfHKRkT8itl8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253076428</pqid></control><display><type>article</type><title>High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction</title><source>Wiley Online Library Open Access</source><creator>Fraga, Edmundo ; Zea-Garcia, Jesus D. ; Yáñez, Armando ; De la Torre, Angeles G. ; Cuesta, Ana ; Valcárcel-Fernández, Ricardo ; Farré-París, Francesc ; Malfois, Marc ; Aranda, Miguel A. G.</creator><creatorcontrib>Fraga, Edmundo ; Zea-Garcia, Jesus D. ; Yáñez, Armando ; De la Torre, Angeles G. ; Cuesta, Ana ; Valcárcel-Fernández, Ricardo ; Farré-París, Francesc ; Malfois, Marc ; Aranda, Miguel A. G.</creatorcontrib><description>In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure range are static as they are easy to design and operate. This is convenient for the study of single‐phase materials; however, powder diffraction quantitative analyses for multiphase systems cannot be performed accurately as a good powder average cannot be attained. Here, the design, construction and commissioning of a cost‐effective spinning capillary cell for in situ powder X‐ray diffraction is reported, for pressures currently up to 200 bar. The design addresses the importance of reducing the stress on the capillary by mechanically synchronizing the applied rotation power and alignment on both sides of the capillary while allowing the displacement of the supports needed to accommodate different capillaries sizes and to insert the sample within the tube. This cell can be utilized for multiple purposes allowing the introduction of gas or liquid from both ends of the capillary. The commissioning is reported for the hydration of a commercial oil well cement at 150 bar and 150°C. The quality of the resulting powder diffraction data has allowed in situ Rietveld quantitative phase analyses for a hydrating cement containing seven crystalline phases.
The design, construction and commissioning of a cost‐effective spinning capillary cell is reported for in situ powder X‐ray diffraction for pressures up to several hundred bar. In situ recorded data have been quantitatively analyzed by the Rietveld method.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577519005150</identifier><identifier>PMID: 31274449</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Biological activity ; Capillaries ; Capillary pressure ; cement hydration ; Cements ; Commissioning ; Construction costs ; Equipment Design ; high‐pressure equipment ; Hydration ; oil well cement ; Oil wells ; Organic chemistry ; Powder Diffraction - methods ; Pressure ; Rietveld quantitative phase analysis ; Spinning (materials) ; Synchronism ; Synchrotrons ; Temperature ; X-ray diffraction</subject><ispartof>Journal of synchrotron radiation, 2019-07, Vol.26 (4), p.1238-1244</ispartof><rights>International Union of Crystallography, 2019</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3799-a8d2db0933e5f7512c4a99c6d14fe8d911708071220390ad55c1ae2fdfd02ba73</citedby><cites>FETCH-LOGICAL-c3799-a8d2db0933e5f7512c4a99c6d14fe8d911708071220390ad55c1ae2fdfd02ba73</cites><orcidid>0000-0003-4335-4995 ; 0000-0001-5231-1896 ; 0000-0001-8852-5191 ; 0000-0002-8634-2241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600577519005150$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600577519005150$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600577519005150$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31274449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fraga, Edmundo</creatorcontrib><creatorcontrib>Zea-Garcia, Jesus D.</creatorcontrib><creatorcontrib>Yáñez, Armando</creatorcontrib><creatorcontrib>De la Torre, Angeles G.</creatorcontrib><creatorcontrib>Cuesta, Ana</creatorcontrib><creatorcontrib>Valcárcel-Fernández, Ricardo</creatorcontrib><creatorcontrib>Farré-París, Francesc</creatorcontrib><creatorcontrib>Malfois, Marc</creatorcontrib><creatorcontrib>Aranda, Miguel A. G.</creatorcontrib><title>High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure range are static as they are easy to design and operate. This is convenient for the study of single‐phase materials; however, powder diffraction quantitative analyses for multiphase systems cannot be performed accurately as a good powder average cannot be attained. Here, the design, construction and commissioning of a cost‐effective spinning capillary cell for in situ powder X‐ray diffraction is reported, for pressures currently up to 200 bar. The design addresses the importance of reducing the stress on the capillary by mechanically synchronizing the applied rotation power and alignment on both sides of the capillary while allowing the displacement of the supports needed to accommodate different capillaries sizes and to insert the sample within the tube. This cell can be utilized for multiple purposes allowing the introduction of gas or liquid from both ends of the capillary. The commissioning is reported for the hydration of a commercial oil well cement at 150 bar and 150°C. The quality of the resulting powder diffraction data has allowed in situ Rietveld quantitative phase analyses for a hydrating cement containing seven crystalline phases.
The design, construction and commissioning of a cost‐effective spinning capillary cell is reported for in situ powder X‐ray diffraction for pressures up to several hundred bar. In situ recorded data have been quantitatively analyzed by the Rietveld method.</description><subject>Biological activity</subject><subject>Capillaries</subject><subject>Capillary pressure</subject><subject>cement hydration</subject><subject>Cements</subject><subject>Commissioning</subject><subject>Construction costs</subject><subject>Equipment Design</subject><subject>high‐pressure equipment</subject><subject>Hydration</subject><subject>oil well cement</subject><subject>Oil wells</subject><subject>Organic chemistry</subject><subject>Powder Diffraction - methods</subject><subject>Pressure</subject><subject>Rietveld quantitative phase analysis</subject><subject>Spinning (materials)</subject><subject>Synchronism</subject><subject>Synchrotrons</subject><subject>Temperature</subject><subject>X-ray diffraction</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbtOHDEUhq2IKMCGB0iDLNHQLBzb4_W4jBC3aCUKSBSqkdcXMJqxJ_aM0HZ5hDxjngSPFiJECqpj__r-X-eC0BcCR4SAOL4mCwAuBCeyVMLhA9qZpPmkbb16b6PdnB8AyEJQ9gltM0JFVVVyB3UX_u7-7-8_fbI5j8liFQwu_8F2vU1qmKTc-xB8uMNa9b5tVVpjbdsWu5iwDzj7YcR5HfR9ikOKAf8s_qTWuI-PxiZsvHNJ6cHH8Bl9dKrNdu-5ztD3s9Obk4v58ur88uTrcq6ZkHKuakPNCiRjlrsyHdWVklIvDKmcrY0kREANglAKTIIynGuiLHXGGaArJdgMHW5y-xR_jTYPTefz1LMKNo65oawCqGpOWUEP3qAPcUyhdNdQyhmIRUXrQpENpVPMOVnX9Ml3ZRMNgWa6RfPfLYpn_zl5XHXW_HO8LL8AcgM8-tau309svl3f0rMfHKRkT8itl8M</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Fraga, Edmundo</creator><creator>Zea-Garcia, Jesus D.</creator><creator>Yáñez, Armando</creator><creator>De la Torre, Angeles G.</creator><creator>Cuesta, Ana</creator><creator>Valcárcel-Fernández, Ricardo</creator><creator>Farré-París, Francesc</creator><creator>Malfois, Marc</creator><creator>Aranda, Miguel A. G.</creator><general>International Union of Crystallography</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4335-4995</orcidid><orcidid>https://orcid.org/0000-0001-5231-1896</orcidid><orcidid>https://orcid.org/0000-0001-8852-5191</orcidid><orcidid>https://orcid.org/0000-0002-8634-2241</orcidid></search><sort><creationdate>201907</creationdate><title>High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction</title><author>Fraga, Edmundo ; Zea-Garcia, Jesus D. ; Yáñez, Armando ; De la Torre, Angeles G. ; Cuesta, Ana ; Valcárcel-Fernández, Ricardo ; Farré-París, Francesc ; Malfois, Marc ; Aranda, Miguel A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3799-a8d2db0933e5f7512c4a99c6d14fe8d911708071220390ad55c1ae2fdfd02ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological activity</topic><topic>Capillaries</topic><topic>Capillary pressure</topic><topic>cement hydration</topic><topic>Cements</topic><topic>Commissioning</topic><topic>Construction costs</topic><topic>Equipment Design</topic><topic>high‐pressure equipment</topic><topic>Hydration</topic><topic>oil well cement</topic><topic>Oil wells</topic><topic>Organic chemistry</topic><topic>Powder Diffraction - methods</topic><topic>Pressure</topic><topic>Rietveld quantitative phase analysis</topic><topic>Spinning (materials)</topic><topic>Synchronism</topic><topic>Synchrotrons</topic><topic>Temperature</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraga, Edmundo</creatorcontrib><creatorcontrib>Zea-Garcia, Jesus D.</creatorcontrib><creatorcontrib>Yáñez, Armando</creatorcontrib><creatorcontrib>De la Torre, Angeles G.</creatorcontrib><creatorcontrib>Cuesta, Ana</creatorcontrib><creatorcontrib>Valcárcel-Fernández, Ricardo</creatorcontrib><creatorcontrib>Farré-París, Francesc</creatorcontrib><creatorcontrib>Malfois, Marc</creatorcontrib><creatorcontrib>Aranda, Miguel A. G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fraga, Edmundo</au><au>Zea-Garcia, Jesus D.</au><au>Yáñez, Armando</au><au>De la Torre, Angeles G.</au><au>Cuesta, Ana</au><au>Valcárcel-Fernández, Ricardo</au><au>Farré-París, Francesc</au><au>Malfois, Marc</au><au>Aranda, Miguel A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2019-07</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><spage>1238</spage><epage>1244</epage><pages>1238-1244</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>In situ research of materials under moderate pressures (hundreds of bar) is essential in many scientific fields. These range from gas sorption to chemical and biological processes. One industrially important discipline is the hydration of oil well cements. Existing capillary cells in this pressure range are static as they are easy to design and operate. This is convenient for the study of single‐phase materials; however, powder diffraction quantitative analyses for multiphase systems cannot be performed accurately as a good powder average cannot be attained. Here, the design, construction and commissioning of a cost‐effective spinning capillary cell for in situ powder X‐ray diffraction is reported, for pressures currently up to 200 bar. The design addresses the importance of reducing the stress on the capillary by mechanically synchronizing the applied rotation power and alignment on both sides of the capillary while allowing the displacement of the supports needed to accommodate different capillaries sizes and to insert the sample within the tube. This cell can be utilized for multiple purposes allowing the introduction of gas or liquid from both ends of the capillary. The commissioning is reported for the hydration of a commercial oil well cement at 150 bar and 150°C. The quality of the resulting powder diffraction data has allowed in situ Rietveld quantitative phase analyses for a hydrating cement containing seven crystalline phases.
The design, construction and commissioning of a cost‐effective spinning capillary cell is reported for in situ powder X‐ray diffraction for pressures up to several hundred bar. In situ recorded data have been quantitatively analyzed by the Rietveld method.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>31274449</pmid><doi>10.1107/S1600577519005150</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4335-4995</orcidid><orcidid>https://orcid.org/0000-0001-5231-1896</orcidid><orcidid>https://orcid.org/0000-0001-8852-5191</orcidid><orcidid>https://orcid.org/0000-0002-8634-2241</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1600-5775 |
ispartof | Journal of synchrotron radiation, 2019-07, Vol.26 (4), p.1238-1244 |
issn | 1600-5775 0909-0495 1600-5775 |
language | eng |
recordid | cdi_proquest_miscellaneous_2340048523 |
source | Wiley Online Library Open Access |
subjects | Biological activity Capillaries Capillary pressure cement hydration Cements Commissioning Construction costs Equipment Design high‐pressure equipment Hydration oil well cement Oil wells Organic chemistry Powder Diffraction - methods Pressure Rietveld quantitative phase analysis Spinning (materials) Synchronism Synchrotrons Temperature X-ray diffraction |
title | High‐pressure and ‐temperature spinning capillary cell for in situ synchrotron X‐ray powder diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90pressure%20and%20%E2%80%90temperature%20spinning%20capillary%20cell%20for%20in%20situ%20synchrotron%20X%E2%80%90ray%20powder%20diffraction&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Fraga,%20Edmundo&rft.date=2019-07&rft.volume=26&rft.issue=4&rft.spage=1238&rft.epage=1244&rft.pages=1238-1244&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577519005150&rft_dat=%3Cproquest_24P%3E2340048523%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253076428&rft_id=info:pmid/31274449&rfr_iscdi=true |