Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent

Apatitic bone cements have been used as a clinical bone substitutes and drug delivery vehicles for therapeutic agents in orthopedic applications. This has led to their combination with different drugs with known ability to foster bone formation. Recent studies have evaluated Simvastatin for its role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2020-04, Vol.108 (3), p.760-770
Hauptverfasser: Khurana, Kanupriya, Guillem‐Marti, Jordi, Soldera, Flavio, Mücklich, Frank, Canal, Cristina, Ginebra, Maria‐Pau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 770
container_issue 3
container_start_page 760
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 108
creator Khurana, Kanupriya
Guillem‐Marti, Jordi
Soldera, Flavio
Mücklich, Frank
Canal, Cristina
Ginebra, Maria‐Pau
description Apatitic bone cements have been used as a clinical bone substitutes and drug delivery vehicles for therapeutic agents in orthopedic applications. This has led to their combination with different drugs with known ability to foster bone formation. Recent studies have evaluated Simvastatin for its role in enhanced bone regeneration, but its lipophilicity hampers incorporation and release to and from the bone graft. In this study, injectable calcium phosphate foams (i‐CPF) based on α‐tricalcium phosphate were loaded for the first time with Pitavastatin. The stability of the drug in different conditions relevant to this study, the effect of the drug on the i‐CPFs properties, the release profile, and the in vitro biological performance with regard to mineralization and vascularization were investigated. Pitavastatin did not cause any changes in neither the micro nor the macro structure of the i‐CPFs, which retained their biomimetic features. PITA‐loaded i‐CPFs showed a dose‐dependent drug release, with early stage release kinetics clearly affected by the evolving microstructure due to the setting of cement. in vitro studies showed dose‐dependent enhancement of mineralization and vascularization. Our findings contribute towards the design of controlled release with low drug dosing bone grafts: i‐CPFs loaded with PITA as osteogenic and angiogenic agent.
doi_str_mv 10.1002/jbm.b.34430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2340042765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340042765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4340-b2cedd867d47a425be29759a357ccd5672c26653afb2bb0c8a08b3d58d3fd4043</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMoPqor9xJwI0hrJo95LFV8VCq60HXI445NmZnUSUbpvzdadeHCRfIlcDj38iF0mJFJRgg9W-h2oieMc0Y20G4mBB3zqsw2f98F20F7ISwSnBPBttEOy7KyqFi1i-pptwATlW4AG9UYN7R4OfdhOVcRcO1VG9Ld4zgHbKFxb9CvsK_xo4vqTYWoouuwCtiHCP4FOmew6mw6L-7nmyLuo61aNQEOvnOEnq-vni5vx7OHm-nl-WxsOONkrKkBa8u8sLxQnAoNtCpEpZgojLEiL6iheS6YqjXVmphSkVIzK0rLassJZyN0svYue_86QIiydcFA06gO_BAkTVMIp0VyjNDxH3Thh75L2yUqr0pGK5En6nRNmd6H0EMtl71rVb-SGZGf9ctUv9Tyq_5EH307B92C_WV_-k4AXQPvroHVfy55d3F_sbZ-AD65kKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369832956</pqid></control><display><type>article</type><title>Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Khurana, Kanupriya ; Guillem‐Marti, Jordi ; Soldera, Flavio ; Mücklich, Frank ; Canal, Cristina ; Ginebra, Maria‐Pau</creator><creatorcontrib>Khurana, Kanupriya ; Guillem‐Marti, Jordi ; Soldera, Flavio ; Mücklich, Frank ; Canal, Cristina ; Ginebra, Maria‐Pau</creatorcontrib><description>Apatitic bone cements have been used as a clinical bone substitutes and drug delivery vehicles for therapeutic agents in orthopedic applications. This has led to their combination with different drugs with known ability to foster bone formation. Recent studies have evaluated Simvastatin for its role in enhanced bone regeneration, but its lipophilicity hampers incorporation and release to and from the bone graft. In this study, injectable calcium phosphate foams (i‐CPF) based on α‐tricalcium phosphate were loaded for the first time with Pitavastatin. The stability of the drug in different conditions relevant to this study, the effect of the drug on the i‐CPFs properties, the release profile, and the in vitro biological performance with regard to mineralization and vascularization were investigated. Pitavastatin did not cause any changes in neither the micro nor the macro structure of the i‐CPFs, which retained their biomimetic features. PITA‐loaded i‐CPFs showed a dose‐dependent drug release, with early stage release kinetics clearly affected by the evolving microstructure due to the setting of cement. in vitro studies showed dose‐dependent enhancement of mineralization and vascularization. Our findings contribute towards the design of controlled release with low drug dosing bone grafts: i‐CPFs loaded with PITA as osteogenic and angiogenic agent.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.34430</identifier><identifier>PMID: 31187939</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Angiogenesis ; Biomedical materials ; Biomimetics ; Bone biomaterials ; Bone cements ; Bone grafts ; Bone growth ; Calcium ; Calcium phosphates ; Chemical compounds ; controlled drug release ; Controlled release ; Dosage ; Drug delivery ; Drug delivery systems ; Drug development ; Drug dosages ; endothelial progenitor cells ; Foams ; Grafting ; Immunosuppressive agents ; Lipophilicity ; Materials research ; Materials science ; Mesenchymal stem cells ; Mineralization ; Orthopedics ; Osteogenesis ; Pharmacology ; rat mesenchymal stem cells ; Regeneration ; Regeneration (physiology) ; Simvastatin ; Substitute bone ; Surgical implants ; Tricalcium phosphate ; Vascularization</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2020-04, Vol.108 (3), p.760-770</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4340-b2cedd867d47a425be29759a357ccd5672c26653afb2bb0c8a08b3d58d3fd4043</citedby><cites>FETCH-LOGICAL-c4340-b2cedd867d47a425be29759a357ccd5672c26653afb2bb0c8a08b3d58d3fd4043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.34430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.34430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31187939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khurana, Kanupriya</creatorcontrib><creatorcontrib>Guillem‐Marti, Jordi</creatorcontrib><creatorcontrib>Soldera, Flavio</creatorcontrib><creatorcontrib>Mücklich, Frank</creatorcontrib><creatorcontrib>Canal, Cristina</creatorcontrib><creatorcontrib>Ginebra, Maria‐Pau</creatorcontrib><title>Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Apatitic bone cements have been used as a clinical bone substitutes and drug delivery vehicles for therapeutic agents in orthopedic applications. This has led to their combination with different drugs with known ability to foster bone formation. Recent studies have evaluated Simvastatin for its role in enhanced bone regeneration, but its lipophilicity hampers incorporation and release to and from the bone graft. In this study, injectable calcium phosphate foams (i‐CPF) based on α‐tricalcium phosphate were loaded for the first time with Pitavastatin. The stability of the drug in different conditions relevant to this study, the effect of the drug on the i‐CPFs properties, the release profile, and the in vitro biological performance with regard to mineralization and vascularization were investigated. Pitavastatin did not cause any changes in neither the micro nor the macro structure of the i‐CPFs, which retained their biomimetic features. PITA‐loaded i‐CPFs showed a dose‐dependent drug release, with early stage release kinetics clearly affected by the evolving microstructure due to the setting of cement. in vitro studies showed dose‐dependent enhancement of mineralization and vascularization. Our findings contribute towards the design of controlled release with low drug dosing bone grafts: i‐CPFs loaded with PITA as osteogenic and angiogenic agent.</description><subject>Angiogenesis</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bone biomaterials</subject><subject>Bone cements</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Calcium</subject><subject>Calcium phosphates</subject><subject>Chemical compounds</subject><subject>controlled drug release</subject><subject>Controlled release</subject><subject>Dosage</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Drug development</subject><subject>Drug dosages</subject><subject>endothelial progenitor cells</subject><subject>Foams</subject><subject>Grafting</subject><subject>Immunosuppressive agents</subject><subject>Lipophilicity</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Mesenchymal stem cells</subject><subject>Mineralization</subject><subject>Orthopedics</subject><subject>Osteogenesis</subject><subject>Pharmacology</subject><subject>rat mesenchymal stem cells</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Simvastatin</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><subject>Tricalcium phosphate</subject><subject>Vascularization</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMoPqor9xJwI0hrJo95LFV8VCq60HXI445NmZnUSUbpvzdadeHCRfIlcDj38iF0mJFJRgg9W-h2oieMc0Y20G4mBB3zqsw2f98F20F7ISwSnBPBttEOy7KyqFi1i-pptwATlW4AG9UYN7R4OfdhOVcRcO1VG9Ld4zgHbKFxb9CvsK_xo4vqTYWoouuwCtiHCP4FOmew6mw6L-7nmyLuo61aNQEOvnOEnq-vni5vx7OHm-nl-WxsOONkrKkBa8u8sLxQnAoNtCpEpZgojLEiL6iheS6YqjXVmphSkVIzK0rLassJZyN0svYue_86QIiydcFA06gO_BAkTVMIp0VyjNDxH3Thh75L2yUqr0pGK5En6nRNmd6H0EMtl71rVb-SGZGf9ctUv9Tyq_5EH307B92C_WV_-k4AXQPvroHVfy55d3F_sbZ-AD65kKo</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Khurana, Kanupriya</creator><creator>Guillem‐Marti, Jordi</creator><creator>Soldera, Flavio</creator><creator>Mücklich, Frank</creator><creator>Canal, Cristina</creator><creator>Ginebra, Maria‐Pau</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202004</creationdate><title>Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent</title><author>Khurana, Kanupriya ; Guillem‐Marti, Jordi ; Soldera, Flavio ; Mücklich, Frank ; Canal, Cristina ; Ginebra, Maria‐Pau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4340-b2cedd867d47a425be29759a357ccd5672c26653afb2bb0c8a08b3d58d3fd4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angiogenesis</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bone biomaterials</topic><topic>Bone cements</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Calcium</topic><topic>Calcium phosphates</topic><topic>Chemical compounds</topic><topic>controlled drug release</topic><topic>Controlled release</topic><topic>Dosage</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Drug development</topic><topic>Drug dosages</topic><topic>endothelial progenitor cells</topic><topic>Foams</topic><topic>Grafting</topic><topic>Immunosuppressive agents</topic><topic>Lipophilicity</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Mesenchymal stem cells</topic><topic>Mineralization</topic><topic>Orthopedics</topic><topic>Osteogenesis</topic><topic>Pharmacology</topic><topic>rat mesenchymal stem cells</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Simvastatin</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><topic>Tricalcium phosphate</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khurana, Kanupriya</creatorcontrib><creatorcontrib>Guillem‐Marti, Jordi</creatorcontrib><creatorcontrib>Soldera, Flavio</creatorcontrib><creatorcontrib>Mücklich, Frank</creatorcontrib><creatorcontrib>Canal, Cristina</creatorcontrib><creatorcontrib>Ginebra, Maria‐Pau</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khurana, Kanupriya</au><au>Guillem‐Marti, Jordi</au><au>Soldera, Flavio</au><au>Mücklich, Frank</au><au>Canal, Cristina</au><au>Ginebra, Maria‐Pau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2020-04</date><risdate>2020</risdate><volume>108</volume><issue>3</issue><spage>760</spage><epage>770</epage><pages>760-770</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Apatitic bone cements have been used as a clinical bone substitutes and drug delivery vehicles for therapeutic agents in orthopedic applications. This has led to their combination with different drugs with known ability to foster bone formation. Recent studies have evaluated Simvastatin for its role in enhanced bone regeneration, but its lipophilicity hampers incorporation and release to and from the bone graft. In this study, injectable calcium phosphate foams (i‐CPF) based on α‐tricalcium phosphate were loaded for the first time with Pitavastatin. The stability of the drug in different conditions relevant to this study, the effect of the drug on the i‐CPFs properties, the release profile, and the in vitro biological performance with regard to mineralization and vascularization were investigated. Pitavastatin did not cause any changes in neither the micro nor the macro structure of the i‐CPFs, which retained their biomimetic features. PITA‐loaded i‐CPFs showed a dose‐dependent drug release, with early stage release kinetics clearly affected by the evolving microstructure due to the setting of cement. in vitro studies showed dose‐dependent enhancement of mineralization and vascularization. Our findings contribute towards the design of controlled release with low drug dosing bone grafts: i‐CPFs loaded with PITA as osteogenic and angiogenic agent.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31187939</pmid><doi>10.1002/jbm.b.34430</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2020-04, Vol.108 (3), p.760-770
issn 1552-4973
1552-4981
language eng
recordid cdi_proquest_miscellaneous_2340042765
source Wiley Online Library Journals Frontfile Complete
subjects Angiogenesis
Biomedical materials
Biomimetics
Bone biomaterials
Bone cements
Bone grafts
Bone growth
Calcium
Calcium phosphates
Chemical compounds
controlled drug release
Controlled release
Dosage
Drug delivery
Drug delivery systems
Drug development
Drug dosages
endothelial progenitor cells
Foams
Grafting
Immunosuppressive agents
Lipophilicity
Materials research
Materials science
Mesenchymal stem cells
Mineralization
Orthopedics
Osteogenesis
Pharmacology
rat mesenchymal stem cells
Regeneration
Regeneration (physiology)
Simvastatin
Substitute bone
Surgical implants
Tricalcium phosphate
Vascularization
title Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T18%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injectable%20calcium%20phosphate%20foams%20for%20the%20delivery%20of%20Pitavastatin%20as%20osteogenic%20and%20angiogenic%20agent&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Khurana,%20Kanupriya&rft.date=2020-04&rft.volume=108&rft.issue=3&rft.spage=760&rft.epage=770&rft.pages=760-770&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.34430&rft_dat=%3Cproquest_cross%3E2340042765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369832956&rft_id=info:pmid/31187939&rfr_iscdi=true