Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes

The time dependent density matrix renormalization group (TD-DMRG) has become one of the cutting edge methods of quantum dynamics for complex systems. In this paper, we comparatively study the accuracy of three time evolution schemes in the TD-DMRG, the global propagation and compression method with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-01, Vol.152 (2), p.024127-024127
Hauptverfasser: Li, Weitang, Ren, Jiajun, Shuai, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024127
container_issue 2
container_start_page 024127
container_title The Journal of chemical physics
container_volume 152
creator Li, Weitang
Ren, Jiajun
Shuai, Zhigang
description The time dependent density matrix renormalization group (TD-DMRG) has become one of the cutting edge methods of quantum dynamics for complex systems. In this paper, we comparatively study the accuracy of three time evolution schemes in the TD-DMRG, the global propagation and compression method with the Runge-Kutta algorithm (P&C-RK), the time dependent variational principle based methods with the matrix unfolding algorithm (TDVP-MU), and with the projector-splitting algorithm (TDVP-PS), by performing benchmarks on the exciton dynamics of the Fenna-Matthews-Olson complex. We show that TDVP-MU and TDVP-PS yield the same result when the time step size is converged and they are more accurate than P&C-RK4, while TDVP-PS tolerates a larger time step size than TDVP-MU. We further adopt the graphical processing units to accelerate the heavy tensor contractions in the TD-DMRG, and it is able to speed up the TDVP-MU and TDVP-PS schemes by up to 73 times.
doi_str_mv 10.1063/1.5135363
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339794661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2337636069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6e533d87dd53cbd27910d5e2499673e31d8e98585cda9a00579320d9cf9a67633</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgis6PC_-ABLxRoZr0tGlzKZtOwS_EgXclJqdYaZuZtAP_vZmbExS8OpDz8ObwErLP2SlnAs74acohBQFrZMBZLqNMSLZOBozFPJKCiS2y7f0bY4xncbJJtoDLhANPBuT5rm_QVVrVVHmP3jfYdrS0jiqte6f0B1WtoeOHyfwBa3Sqq2xLbUmfRtHo9nFMu6pBijNb918br1-xQb9LNkpVe9xbzh0yubx4Gl5FN_fj6-H5TaQhhy4SmAKYPDMmBf1i4kxyZlKMEylFBgjc5CjzNE-1UVIxlmYSYmakLqUSmQDYIUeL3Kmz7z36rmgqHw6tVYu290UMIDOZCMEDPfxF32zv2nDdXIWw0JQM6nihtLPeOyyLqasa5T4Kzop53QUvlnUHe7BM7F8aNCv53W8AJwvgddV9NbcyM-t-koqpKf_Df7_-BBO_k68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337636069</pqid></control><display><type>article</type><title>Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Weitang ; Ren, Jiajun ; Shuai, Zhigang</creator><creatorcontrib>Li, Weitang ; Ren, Jiajun ; Shuai, Zhigang</creatorcontrib><description>The time dependent density matrix renormalization group (TD-DMRG) has become one of the cutting edge methods of quantum dynamics for complex systems. In this paper, we comparatively study the accuracy of three time evolution schemes in the TD-DMRG, the global propagation and compression method with the Runge-Kutta algorithm (P&amp;C-RK), the time dependent variational principle based methods with the matrix unfolding algorithm (TDVP-MU), and with the projector-splitting algorithm (TDVP-PS), by performing benchmarks on the exciton dynamics of the Fenna-Matthews-Olson complex. We show that TDVP-MU and TDVP-PS yield the same result when the time step size is converged and they are more accurate than P&amp;C-RK4, while TDVP-PS tolerates a larger time step size than TDVP-MU. We further adopt the graphical processing units to accelerate the heavy tensor contractions in the TD-DMRG, and it is able to speed up the TDVP-MU and TDVP-PS schemes by up to 73 times.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5135363</identifier><identifier>PMID: 31941314</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Acceleration ; Algorithms ; Complex systems ; Evolution ; Excitons ; Graphics processing units ; Mathematical analysis ; Physics ; Runge-Kutta method ; Tensors ; Time dependence</subject><ispartof>The Journal of chemical physics, 2020-01, Vol.152 (2), p.024127-024127</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6e533d87dd53cbd27910d5e2499673e31d8e98585cda9a00579320d9cf9a67633</citedby><cites>FETCH-LOGICAL-c383t-6e533d87dd53cbd27910d5e2499673e31d8e98585cda9a00579320d9cf9a67633</cites><orcidid>0000-0003-3867-2331 ; 0000-0002-8739-641X ; 0000-0002-1508-4943 ; 0000000215084943 ; 000000028739641X ; 0000000338672331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5135363$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31941314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Weitang</creatorcontrib><creatorcontrib>Ren, Jiajun</creatorcontrib><creatorcontrib>Shuai, Zhigang</creatorcontrib><title>Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The time dependent density matrix renormalization group (TD-DMRG) has become one of the cutting edge methods of quantum dynamics for complex systems. In this paper, we comparatively study the accuracy of three time evolution schemes in the TD-DMRG, the global propagation and compression method with the Runge-Kutta algorithm (P&amp;C-RK), the time dependent variational principle based methods with the matrix unfolding algorithm (TDVP-MU), and with the projector-splitting algorithm (TDVP-PS), by performing benchmarks on the exciton dynamics of the Fenna-Matthews-Olson complex. We show that TDVP-MU and TDVP-PS yield the same result when the time step size is converged and they are more accurate than P&amp;C-RK4, while TDVP-PS tolerates a larger time step size than TDVP-MU. We further adopt the graphical processing units to accelerate the heavy tensor contractions in the TD-DMRG, and it is able to speed up the TDVP-MU and TDVP-PS schemes by up to 73 times.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Complex systems</subject><subject>Evolution</subject><subject>Excitons</subject><subject>Graphics processing units</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Runge-Kutta method</subject><subject>Tensors</subject><subject>Time dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgis6PC_-ABLxRoZr0tGlzKZtOwS_EgXclJqdYaZuZtAP_vZmbExS8OpDz8ObwErLP2SlnAs74acohBQFrZMBZLqNMSLZOBozFPJKCiS2y7f0bY4xncbJJtoDLhANPBuT5rm_QVVrVVHmP3jfYdrS0jiqte6f0B1WtoeOHyfwBa3Sqq2xLbUmfRtHo9nFMu6pBijNb918br1-xQb9LNkpVe9xbzh0yubx4Gl5FN_fj6-H5TaQhhy4SmAKYPDMmBf1i4kxyZlKMEylFBgjc5CjzNE-1UVIxlmYSYmakLqUSmQDYIUeL3Kmz7z36rmgqHw6tVYu290UMIDOZCMEDPfxF32zv2nDdXIWw0JQM6nihtLPeOyyLqasa5T4Kzop53QUvlnUHe7BM7F8aNCv53W8AJwvgddV9NbcyM-t-koqpKf_Df7_-BBO_k68</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Li, Weitang</creator><creator>Ren, Jiajun</creator><creator>Shuai, Zhigang</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3867-2331</orcidid><orcidid>https://orcid.org/0000-0002-8739-641X</orcidid><orcidid>https://orcid.org/0000-0002-1508-4943</orcidid><orcidid>https://orcid.org/0000000215084943</orcidid><orcidid>https://orcid.org/000000028739641X</orcidid><orcidid>https://orcid.org/0000000338672331</orcidid></search><sort><creationdate>20200114</creationdate><title>Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes</title><author>Li, Weitang ; Ren, Jiajun ; Shuai, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6e533d87dd53cbd27910d5e2499673e31d8e98585cda9a00579320d9cf9a67633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Complex systems</topic><topic>Evolution</topic><topic>Excitons</topic><topic>Graphics processing units</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Runge-Kutta method</topic><topic>Tensors</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weitang</creatorcontrib><creatorcontrib>Ren, Jiajun</creatorcontrib><creatorcontrib>Shuai, Zhigang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weitang</au><au>Ren, Jiajun</au><au>Shuai, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-01-14</date><risdate>2020</risdate><volume>152</volume><issue>2</issue><spage>024127</spage><epage>024127</epage><pages>024127-024127</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The time dependent density matrix renormalization group (TD-DMRG) has become one of the cutting edge methods of quantum dynamics for complex systems. In this paper, we comparatively study the accuracy of three time evolution schemes in the TD-DMRG, the global propagation and compression method with the Runge-Kutta algorithm (P&amp;C-RK), the time dependent variational principle based methods with the matrix unfolding algorithm (TDVP-MU), and with the projector-splitting algorithm (TDVP-PS), by performing benchmarks on the exciton dynamics of the Fenna-Matthews-Olson complex. We show that TDVP-MU and TDVP-PS yield the same result when the time step size is converged and they are more accurate than P&amp;C-RK4, while TDVP-PS tolerates a larger time step size than TDVP-MU. We further adopt the graphical processing units to accelerate the heavy tensor contractions in the TD-DMRG, and it is able to speed up the TDVP-MU and TDVP-PS schemes by up to 73 times.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31941314</pmid><doi>10.1063/1.5135363</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3867-2331</orcidid><orcidid>https://orcid.org/0000-0002-8739-641X</orcidid><orcidid>https://orcid.org/0000-0002-1508-4943</orcidid><orcidid>https://orcid.org/0000000215084943</orcidid><orcidid>https://orcid.org/000000028739641X</orcidid><orcidid>https://orcid.org/0000000338672331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-01, Vol.152 (2), p.024127-024127
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2339794661
source AIP Journals Complete; Alma/SFX Local Collection
subjects Acceleration
Algorithms
Complex systems
Evolution
Excitons
Graphics processing units
Mathematical analysis
Physics
Runge-Kutta method
Tensors
Time dependence
title Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20assessment%20for%20accuracy%20and%20GPU%20acceleration%20of%20TD-DMRG%20time%20evolution%20schemes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Weitang&rft.date=2020-01-14&rft.volume=152&rft.issue=2&rft.spage=024127&rft.epage=024127&rft.pages=024127-024127&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5135363&rft_dat=%3Cproquest_cross%3E2337636069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337636069&rft_id=info:pmid/31941314&rfr_iscdi=true