Resource availability alters fitness trade‐offs: implications for evolution in stressful environments
Premise Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and inf...
Gespeichert in:
Veröffentlicht in: | American journal of botany 2020-02, Vol.107 (2), p.308-318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 2 |
container_start_page | 308 |
container_title | American journal of botany |
container_volume | 107 |
creator | MacTavish, Rachel Anderson, Jill T. |
description | Premise
Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress.
Methods
We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability.
Results
Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns.
Conclusions
Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels. |
doi_str_mv | 10.1002/ajb2.1417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339792208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339792208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4547-658980448a68e1af6fbbc4ef4b814c7e69c7b84e6b6aac9e253e49b37c4167093</originalsourceid><addsrcrecordid>eNp10M2KUzEUB_AgI06nuvAFhsBsnMWd5qvJjbux-ElBEF1fkvREUnJvOsm9le58BJ_RJzG11YXgKhzyO38Of4SeU3JHCWELs7XsjgqqHqEZXXLVMKrVBZqR-tloytgluiplW0ctNHuCLjnVglPOZ-jrJyhpyg6w2ZsQjQ0xjAds4gi5YB_GAUrBYzYb-Pn9R_K-vMSh38XgzBjSUEnKGPYpTscRhwGXMdcVP0UMwz7kNPQwjOUpeuxNLPDs_M7RlzevP6_eNeuPb9-v7teNE0uhGrlsdUuEaI1sgRovvbVOgBe2pcIpkNop2wqQVhrjNLAlB6EtV05QqYjmc_TilLvL6WGCMnZ9KA5iNAOkqXSMc600Y6St9OYfuq1NDPW6qlpCuNRSVHV7Ui6nUjL4bpdDb_Kho6Q7tt8d2--O7Vd7fU6cbA-bv_JP3RUsTuBbiHD4f1J3_-EV-x35C7fukHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380036964</pqid></control><display><type>article</type><title>Resource availability alters fitness trade‐offs: implications for evolution in stressful environments</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MacTavish, Rachel ; Anderson, Jill T.</creator><creatorcontrib>MacTavish, Rachel ; Anderson, Jill T.</creatorcontrib><description>Premise
Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress.
Methods
We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability.
Results
Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns.
Conclusions
Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.</description><identifier>ISSN: 0002-9122</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/ajb2.1417</identifier><identifier>PMID: 31943133</identifier><language>eng</language><publisher>United States: Botanical Society of America, Inc</publisher><subject>abiotic stress ; Adaptation ; Adaptation, Physiological ; Aridity ; Availability ; Brassicaceae ; Breeding success ; Climate Change ; Drought ; Factorial design ; Fecundity ; Fitness ; genetic covariance ; Growth rate ; High temperature ; life history trade‐offs ; local adaptation ; Nutrient availability ; Nutrients ; Phenotype ; Reproduction ; Reproductive fitness ; Resource availability ; Soil moisture ; soil resource availability ; Soils ; Stress ; Water treatment</subject><ispartof>American journal of botany, 2020-02, Vol.107 (2), p.308-318</ispartof><rights>2020 Botanical Society of America</rights><rights>2020 Botanical Society of America.</rights><rights>Copyright Botanical Society of America, Inc. Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4547-658980448a68e1af6fbbc4ef4b814c7e69c7b84e6b6aac9e253e49b37c4167093</citedby><cites>FETCH-LOGICAL-c4547-658980448a68e1af6fbbc4ef4b814c7e69c7b84e6b6aac9e253e49b37c4167093</cites><orcidid>0000-0002-3253-8142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajb2.1417$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajb2.1417$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacTavish, Rachel</creatorcontrib><creatorcontrib>Anderson, Jill T.</creatorcontrib><title>Resource availability alters fitness trade‐offs: implications for evolution in stressful environments</title><title>American journal of botany</title><addtitle>Am J Bot</addtitle><description>Premise
Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress.
Methods
We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability.
Results
Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns.
Conclusions
Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.</description><subject>abiotic stress</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Aridity</subject><subject>Availability</subject><subject>Brassicaceae</subject><subject>Breeding success</subject><subject>Climate Change</subject><subject>Drought</subject><subject>Factorial design</subject><subject>Fecundity</subject><subject>Fitness</subject><subject>genetic covariance</subject><subject>Growth rate</subject><subject>High temperature</subject><subject>life history trade‐offs</subject><subject>local adaptation</subject><subject>Nutrient availability</subject><subject>Nutrients</subject><subject>Phenotype</subject><subject>Reproduction</subject><subject>Reproductive fitness</subject><subject>Resource availability</subject><subject>Soil moisture</subject><subject>soil resource availability</subject><subject>Soils</subject><subject>Stress</subject><subject>Water treatment</subject><issn>0002-9122</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M2KUzEUB_AgI06nuvAFhsBsnMWd5qvJjbux-ElBEF1fkvREUnJvOsm9le58BJ_RJzG11YXgKhzyO38Of4SeU3JHCWELs7XsjgqqHqEZXXLVMKrVBZqR-tloytgluiplW0ctNHuCLjnVglPOZ-jrJyhpyg6w2ZsQjQ0xjAds4gi5YB_GAUrBYzYb-Pn9R_K-vMSh38XgzBjSUEnKGPYpTscRhwGXMdcVP0UMwz7kNPQwjOUpeuxNLPDs_M7RlzevP6_eNeuPb9-v7teNE0uhGrlsdUuEaI1sgRovvbVOgBe2pcIpkNop2wqQVhrjNLAlB6EtV05QqYjmc_TilLvL6WGCMnZ9KA5iNAOkqXSMc600Y6St9OYfuq1NDPW6qlpCuNRSVHV7Ui6nUjL4bpdDb_Kho6Q7tt8d2--O7Vd7fU6cbA-bv_JP3RUsTuBbiHD4f1J3_-EV-x35C7fukHo</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>MacTavish, Rachel</creator><creator>Anderson, Jill T.</creator><general>Botanical Society of America, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3253-8142</orcidid></search><sort><creationdate>202002</creationdate><title>Resource availability alters fitness trade‐offs: implications for evolution in stressful environments</title><author>MacTavish, Rachel ; Anderson, Jill T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4547-658980448a68e1af6fbbc4ef4b814c7e69c7b84e6b6aac9e253e49b37c4167093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>abiotic stress</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Aridity</topic><topic>Availability</topic><topic>Brassicaceae</topic><topic>Breeding success</topic><topic>Climate Change</topic><topic>Drought</topic><topic>Factorial design</topic><topic>Fecundity</topic><topic>Fitness</topic><topic>genetic covariance</topic><topic>Growth rate</topic><topic>High temperature</topic><topic>life history trade‐offs</topic><topic>local adaptation</topic><topic>Nutrient availability</topic><topic>Nutrients</topic><topic>Phenotype</topic><topic>Reproduction</topic><topic>Reproductive fitness</topic><topic>Resource availability</topic><topic>Soil moisture</topic><topic>soil resource availability</topic><topic>Soils</topic><topic>Stress</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacTavish, Rachel</creatorcontrib><creatorcontrib>Anderson, Jill T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacTavish, Rachel</au><au>Anderson, Jill T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource availability alters fitness trade‐offs: implications for evolution in stressful environments</atitle><jtitle>American journal of botany</jtitle><addtitle>Am J Bot</addtitle><date>2020-02</date><risdate>2020</risdate><volume>107</volume><issue>2</issue><spage>308</spage><epage>318</epage><pages>308-318</pages><issn>0002-9122</issn><eissn>1537-2197</eissn><abstract>Premise
Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress.
Methods
We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability.
Results
Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns.
Conclusions
Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.</abstract><cop>United States</cop><pub>Botanical Society of America, Inc</pub><pmid>31943133</pmid><doi>10.1002/ajb2.1417</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3253-8142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9122 |
ispartof | American journal of botany, 2020-02, Vol.107 (2), p.308-318 |
issn | 0002-9122 1537-2197 |
language | eng |
recordid | cdi_proquest_miscellaneous_2339792208 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals |
subjects | abiotic stress Adaptation Adaptation, Physiological Aridity Availability Brassicaceae Breeding success Climate Change Drought Factorial design Fecundity Fitness genetic covariance Growth rate High temperature life history trade‐offs local adaptation Nutrient availability Nutrients Phenotype Reproduction Reproductive fitness Resource availability Soil moisture soil resource availability Soils Stress Water treatment |
title | Resource availability alters fitness trade‐offs: implications for evolution in stressful environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20availability%20alters%20fitness%20trade%E2%80%90offs:%20implications%20for%20evolution%20in%20stressful%20environments&rft.jtitle=American%20journal%20of%20botany&rft.au=MacTavish,%20Rachel&rft.date=2020-02&rft.volume=107&rft.issue=2&rft.spage=308&rft.epage=318&rft.pages=308-318&rft.issn=0002-9122&rft.eissn=1537-2197&rft_id=info:doi/10.1002/ajb2.1417&rft_dat=%3Cproquest_cross%3E2339792208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380036964&rft_id=info:pmid/31943133&rfr_iscdi=true |