Resource availability alters fitness trade‐offs: implications for evolution in stressful environments

Premise Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of botany 2020-02, Vol.107 (2), p.308-318
Hauptverfasser: MacTavish, Rachel, Anderson, Jill T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 2
container_start_page 308
container_title American journal of botany
container_volume 107
creator MacTavish, Rachel
Anderson, Jill T.
description Premise Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress. Methods We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability. Results Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns. Conclusions Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.
doi_str_mv 10.1002/ajb2.1417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339792208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339792208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4547-658980448a68e1af6fbbc4ef4b814c7e69c7b84e6b6aac9e253e49b37c4167093</originalsourceid><addsrcrecordid>eNp10M2KUzEUB_AgI06nuvAFhsBsnMWd5qvJjbux-ElBEF1fkvREUnJvOsm9le58BJ_RJzG11YXgKhzyO38Of4SeU3JHCWELs7XsjgqqHqEZXXLVMKrVBZqR-tloytgluiplW0ctNHuCLjnVglPOZ-jrJyhpyg6w2ZsQjQ0xjAds4gi5YB_GAUrBYzYb-Pn9R_K-vMSh38XgzBjSUEnKGPYpTscRhwGXMdcVP0UMwz7kNPQwjOUpeuxNLPDs_M7RlzevP6_eNeuPb9-v7teNE0uhGrlsdUuEaI1sgRovvbVOgBe2pcIpkNop2wqQVhrjNLAlB6EtV05QqYjmc_TilLvL6WGCMnZ9KA5iNAOkqXSMc600Y6St9OYfuq1NDPW6qlpCuNRSVHV7Ui6nUjL4bpdDb_Kho6Q7tt8d2--O7Vd7fU6cbA-bv_JP3RUsTuBbiHD4f1J3_-EV-x35C7fukHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2380036964</pqid></control><display><type>article</type><title>Resource availability alters fitness trade‐offs: implications for evolution in stressful environments</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MacTavish, Rachel ; Anderson, Jill T.</creator><creatorcontrib>MacTavish, Rachel ; Anderson, Jill T.</creatorcontrib><description>Premise Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress. Methods We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability. Results Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns. Conclusions Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.</description><identifier>ISSN: 0002-9122</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/ajb2.1417</identifier><identifier>PMID: 31943133</identifier><language>eng</language><publisher>United States: Botanical Society of America, Inc</publisher><subject>abiotic stress ; Adaptation ; Adaptation, Physiological ; Aridity ; Availability ; Brassicaceae ; Breeding success ; Climate Change ; Drought ; Factorial design ; Fecundity ; Fitness ; genetic covariance ; Growth rate ; High temperature ; life history trade‐offs ; local adaptation ; Nutrient availability ; Nutrients ; Phenotype ; Reproduction ; Reproductive fitness ; Resource availability ; Soil moisture ; soil resource availability ; Soils ; Stress ; Water treatment</subject><ispartof>American journal of botany, 2020-02, Vol.107 (2), p.308-318</ispartof><rights>2020 Botanical Society of America</rights><rights>2020 Botanical Society of America.</rights><rights>Copyright Botanical Society of America, Inc. Feb 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4547-658980448a68e1af6fbbc4ef4b814c7e69c7b84e6b6aac9e253e49b37c4167093</citedby><cites>FETCH-LOGICAL-c4547-658980448a68e1af6fbbc4ef4b814c7e69c7b84e6b6aac9e253e49b37c4167093</cites><orcidid>0000-0002-3253-8142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajb2.1417$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajb2.1417$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacTavish, Rachel</creatorcontrib><creatorcontrib>Anderson, Jill T.</creatorcontrib><title>Resource availability alters fitness trade‐offs: implications for evolution in stressful environments</title><title>American journal of botany</title><addtitle>Am J Bot</addtitle><description>Premise Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress. Methods We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability. Results Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns. Conclusions Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.</description><subject>abiotic stress</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Aridity</subject><subject>Availability</subject><subject>Brassicaceae</subject><subject>Breeding success</subject><subject>Climate Change</subject><subject>Drought</subject><subject>Factorial design</subject><subject>Fecundity</subject><subject>Fitness</subject><subject>genetic covariance</subject><subject>Growth rate</subject><subject>High temperature</subject><subject>life history trade‐offs</subject><subject>local adaptation</subject><subject>Nutrient availability</subject><subject>Nutrients</subject><subject>Phenotype</subject><subject>Reproduction</subject><subject>Reproductive fitness</subject><subject>Resource availability</subject><subject>Soil moisture</subject><subject>soil resource availability</subject><subject>Soils</subject><subject>Stress</subject><subject>Water treatment</subject><issn>0002-9122</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M2KUzEUB_AgI06nuvAFhsBsnMWd5qvJjbux-ElBEF1fkvREUnJvOsm9le58BJ_RJzG11YXgKhzyO38Of4SeU3JHCWELs7XsjgqqHqEZXXLVMKrVBZqR-tloytgluiplW0ctNHuCLjnVglPOZ-jrJyhpyg6w2ZsQjQ0xjAds4gi5YB_GAUrBYzYb-Pn9R_K-vMSh38XgzBjSUEnKGPYpTscRhwGXMdcVP0UMwz7kNPQwjOUpeuxNLPDs_M7RlzevP6_eNeuPb9-v7teNE0uhGrlsdUuEaI1sgRovvbVOgBe2pcIpkNop2wqQVhrjNLAlB6EtV05QqYjmc_TilLvL6WGCMnZ9KA5iNAOkqXSMc600Y6St9OYfuq1NDPW6qlpCuNRSVHV7Ui6nUjL4bpdDb_Kho6Q7tt8d2--O7Vd7fU6cbA-bv_JP3RUsTuBbiHD4f1J3_-EV-x35C7fukHo</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>MacTavish, Rachel</creator><creator>Anderson, Jill T.</creator><general>Botanical Society of America, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3253-8142</orcidid></search><sort><creationdate>202002</creationdate><title>Resource availability alters fitness trade‐offs: implications for evolution in stressful environments</title><author>MacTavish, Rachel ; Anderson, Jill T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4547-658980448a68e1af6fbbc4ef4b814c7e69c7b84e6b6aac9e253e49b37c4167093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>abiotic stress</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Aridity</topic><topic>Availability</topic><topic>Brassicaceae</topic><topic>Breeding success</topic><topic>Climate Change</topic><topic>Drought</topic><topic>Factorial design</topic><topic>Fecundity</topic><topic>Fitness</topic><topic>genetic covariance</topic><topic>Growth rate</topic><topic>High temperature</topic><topic>life history trade‐offs</topic><topic>local adaptation</topic><topic>Nutrient availability</topic><topic>Nutrients</topic><topic>Phenotype</topic><topic>Reproduction</topic><topic>Reproductive fitness</topic><topic>Resource availability</topic><topic>Soil moisture</topic><topic>soil resource availability</topic><topic>Soils</topic><topic>Stress</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacTavish, Rachel</creatorcontrib><creatorcontrib>Anderson, Jill T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacTavish, Rachel</au><au>Anderson, Jill T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource availability alters fitness trade‐offs: implications for evolution in stressful environments</atitle><jtitle>American journal of botany</jtitle><addtitle>Am J Bot</addtitle><date>2020-02</date><risdate>2020</risdate><volume>107</volume><issue>2</issue><spage>308</spage><epage>318</epage><pages>308-318</pages><issn>0002-9122</issn><eissn>1537-2197</eissn><abstract>Premise Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade‐offs across fitness components constrain or facilitate adaptation under resource stress. Methods We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499–3530 m a.s.l.), representing disparate soil moisture and nutrient availability. Results Concordant with local adaptation, maternal families from arid, low‐elevation populations had enhanced fecundity under severe drought over those from more mesic, high‐elevation sites. Furthermore, fitness trade‐offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns. Conclusions Despite high heritabilities in all fitness components across treatments, trade‐offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.</abstract><cop>United States</cop><pub>Botanical Society of America, Inc</pub><pmid>31943133</pmid><doi>10.1002/ajb2.1417</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3253-8142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9122
ispartof American journal of botany, 2020-02, Vol.107 (2), p.308-318
issn 0002-9122
1537-2197
language eng
recordid cdi_proquest_miscellaneous_2339792208
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects abiotic stress
Adaptation
Adaptation, Physiological
Aridity
Availability
Brassicaceae
Breeding success
Climate Change
Drought
Factorial design
Fecundity
Fitness
genetic covariance
Growth rate
High temperature
life history trade‐offs
local adaptation
Nutrient availability
Nutrients
Phenotype
Reproduction
Reproductive fitness
Resource availability
Soil moisture
soil resource availability
Soils
Stress
Water treatment
title Resource availability alters fitness trade‐offs: implications for evolution in stressful environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20availability%20alters%20fitness%20trade%E2%80%90offs:%20implications%20for%20evolution%20in%20stressful%20environments&rft.jtitle=American%20journal%20of%20botany&rft.au=MacTavish,%20Rachel&rft.date=2020-02&rft.volume=107&rft.issue=2&rft.spage=308&rft.epage=318&rft.pages=308-318&rft.issn=0002-9122&rft.eissn=1537-2197&rft_id=info:doi/10.1002/ajb2.1417&rft_dat=%3Cproquest_cross%3E2339792208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2380036964&rft_id=info:pmid/31943133&rfr_iscdi=true