Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake
In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyse...
Gespeichert in:
Veröffentlicht in: | ChemPlusChem (Weinheim, Germany) Germany), 2019-11, Vol.84 (11), p.1767-1774 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1774 |
---|---|
container_issue | 11 |
container_start_page | 1767 |
container_title | ChemPlusChem (Weinheim, Germany) |
container_volume | 84 |
creator | Mohamed, Mohamed Gamal EL‐Mahdy, Ahmed F. M. Ahmed, Mahmoud M. M. Kuo, Shiao‐Wei |
description | In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). The electrochemical performances of this Car‐CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2. The other Car‐CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance.
Carbazole captures: A series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from Car‐4CN in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possess excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). One sample showed excellent electrochemical performance of 545 F/g at 5 mV/s and highest CO2 uptake capacities of 3.91 and 7.60 mmol/g at 298 and 273 K, respectively.Microporous bicarbazole‐based covalent triazine frameworks for high‐performance energy storage and carbon dioxide uptake (Kuo et al.) |
doi_str_mv | 10.1002/cplu.201900635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339791898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319124980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-312ed45f038ab59c18ad94139bcf5e05c808e0c4a599249ac669e5868ae2dab73</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EolXplSOyxIXLLv4TZ-0j3bYUaRGV2j1HE2eydZvYwU4o2xOP0GfkSXC1pSAuzMVj6fOnGf8Iec3ZnDMm3tuhm-aCccNYKdUzsi-4EbNSsfL5X_0eOUzpmuUqmRIL-ZLsSW4KqXWxT-6PXUQ70outH68wuURDSz87G8MQYpgSPXIWYg13ocOfP-6PIGFDl-EbdOhHehkd3DmP9DRCj7ch3iTahkjP3OYq0-cY860Hb5GeeIybLb0YQ4QNUvBZk8XB02MXvrsG6XoY4QZfkRctdAkPH88Dsj49uVyezVZfPn5afljNrFxINZNcYFOolkkNtTKWa2hMwaWpbauQKauZRmYLUMaIwoAtS4NKlxpQNFAv5AF5t_MOMXydMI1V75LFrgOPee9KSGkWhmujM_r2H_Q6TNHn6TLFDc9-zTI131H571KK2FZDdD3EbcVZ9RBX9RBX9RRXfvDmUTvVPTZP-O9wMmB2wK3rcPsfXbU8X63_yH8BpaKk5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319124980</pqid></control><display><type>article</type><title>Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mohamed, Mohamed Gamal ; EL‐Mahdy, Ahmed F. M. ; Ahmed, Mahmoud M. M. ; Kuo, Shiao‐Wei</creator><creatorcontrib>Mohamed, Mohamed Gamal ; EL‐Mahdy, Ahmed F. M. ; Ahmed, Mahmoud M. M. ; Kuo, Shiao‐Wei</creatorcontrib><description>In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). The electrochemical performances of this Car‐CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2. The other Car‐CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance.
Carbazole captures: A series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from Car‐4CN in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possess excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). One sample showed excellent electrochemical performance of 545 F/g at 5 mV/s and highest CO2 uptake capacities of 3.91 and 7.60 mmol/g at 298 and 273 K, respectively.Microporous bicarbazole‐based covalent triazine frameworks for high‐performance energy storage and carbon dioxide uptake (Kuo et al.)</description><identifier>ISSN: 2192-6506</identifier><identifier>EISSN: 2192-6506</identifier><identifier>DOI: 10.1002/cplu.201900635</identifier><identifier>PMID: 31943884</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>carbazole ; Carbon dioxide ; carbon dioxide capture ; Chemistry ; covalent triazine frameworks ; Electrochemistry ; Energy storage ; microporous polymers ; supercapacitors ; Zinc ; Zinc chloride</subject><ispartof>ChemPlusChem (Weinheim, Germany), 2019-11, Vol.84 (11), p.1767-1774</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-312ed45f038ab59c18ad94139bcf5e05c808e0c4a599249ac669e5868ae2dab73</citedby><cites>FETCH-LOGICAL-c3735-312ed45f038ab59c18ad94139bcf5e05c808e0c4a599249ac669e5868ae2dab73</cites><orcidid>0000-0002-4306-7171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcplu.201900635$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcplu.201900635$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohamed, Mohamed Gamal</creatorcontrib><creatorcontrib>EL‐Mahdy, Ahmed F. M.</creatorcontrib><creatorcontrib>Ahmed, Mahmoud M. M.</creatorcontrib><creatorcontrib>Kuo, Shiao‐Wei</creatorcontrib><title>Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake</title><title>ChemPlusChem (Weinheim, Germany)</title><addtitle>Chempluschem</addtitle><description>In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). The electrochemical performances of this Car‐CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2. The other Car‐CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance.
Carbazole captures: A series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from Car‐4CN in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possess excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). One sample showed excellent electrochemical performance of 545 F/g at 5 mV/s and highest CO2 uptake capacities of 3.91 and 7.60 mmol/g at 298 and 273 K, respectively.Microporous bicarbazole‐based covalent triazine frameworks for high‐performance energy storage and carbon dioxide uptake (Kuo et al.)</description><subject>carbazole</subject><subject>Carbon dioxide</subject><subject>carbon dioxide capture</subject><subject>Chemistry</subject><subject>covalent triazine frameworks</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>microporous polymers</subject><subject>supercapacitors</subject><subject>Zinc</subject><subject>Zinc chloride</subject><issn>2192-6506</issn><issn>2192-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhy0EolXplSOyxIXLLv4TZ-0j3bYUaRGV2j1HE2eydZvYwU4o2xOP0GfkSXC1pSAuzMVj6fOnGf8Iec3ZnDMm3tuhm-aCccNYKdUzsi-4EbNSsfL5X_0eOUzpmuUqmRIL-ZLsSW4KqXWxT-6PXUQ70outH68wuURDSz87G8MQYpgSPXIWYg13ocOfP-6PIGFDl-EbdOhHehkd3DmP9DRCj7ch3iTahkjP3OYq0-cY860Hb5GeeIybLb0YQ4QNUvBZk8XB02MXvrsG6XoY4QZfkRctdAkPH88Dsj49uVyezVZfPn5afljNrFxINZNcYFOolkkNtTKWa2hMwaWpbauQKauZRmYLUMaIwoAtS4NKlxpQNFAv5AF5t_MOMXydMI1V75LFrgOPee9KSGkWhmujM_r2H_Q6TNHn6TLFDc9-zTI131H571KK2FZDdD3EbcVZ9RBX9RBX9RRXfvDmUTvVPTZP-O9wMmB2wK3rcPsfXbU8X63_yH8BpaKk5w</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Mohamed, Mohamed Gamal</creator><creator>EL‐Mahdy, Ahmed F. M.</creator><creator>Ahmed, Mahmoud M. M.</creator><creator>Kuo, Shiao‐Wei</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4306-7171</orcidid></search><sort><creationdate>201911</creationdate><title>Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake</title><author>Mohamed, Mohamed Gamal ; EL‐Mahdy, Ahmed F. M. ; Ahmed, Mahmoud M. M. ; Kuo, Shiao‐Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-312ed45f038ab59c18ad94139bcf5e05c808e0c4a599249ac669e5868ae2dab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>carbazole</topic><topic>Carbon dioxide</topic><topic>carbon dioxide capture</topic><topic>Chemistry</topic><topic>covalent triazine frameworks</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>microporous polymers</topic><topic>supercapacitors</topic><topic>Zinc</topic><topic>Zinc chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Mohamed Gamal</creatorcontrib><creatorcontrib>EL‐Mahdy, Ahmed F. M.</creatorcontrib><creatorcontrib>Ahmed, Mahmoud M. M.</creatorcontrib><creatorcontrib>Kuo, Shiao‐Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>MEDLINE - Academic</collection><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Mohamed Gamal</au><au>EL‐Mahdy, Ahmed F. M.</au><au>Ahmed, Mahmoud M. M.</au><au>Kuo, Shiao‐Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake</atitle><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle><addtitle>Chempluschem</addtitle><date>2019-11</date><risdate>2019</risdate><volume>84</volume><issue>11</issue><spage>1767</spage><epage>1774</epage><pages>1767-1774</pages><issn>2192-6506</issn><eissn>2192-6506</eissn><abstract>In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). The electrochemical performances of this Car‐CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2. The other Car‐CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance.
Carbazole captures: A series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from Car‐4CN in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possess excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). One sample showed excellent electrochemical performance of 545 F/g at 5 mV/s and highest CO2 uptake capacities of 3.91 and 7.60 mmol/g at 298 and 273 K, respectively.Microporous bicarbazole‐based covalent triazine frameworks for high‐performance energy storage and carbon dioxide uptake (Kuo et al.)</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>31943884</pmid><doi>10.1002/cplu.201900635</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4306-7171</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-6506 |
ispartof | ChemPlusChem (Weinheim, Germany), 2019-11, Vol.84 (11), p.1767-1774 |
issn | 2192-6506 2192-6506 |
language | eng |
recordid | cdi_proquest_miscellaneous_2339791898 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | carbazole Carbon dioxide carbon dioxide capture Chemistry covalent triazine frameworks Electrochemistry Energy storage microporous polymers supercapacitors Zinc Zinc chloride |
title | Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Synthesis%20of%20Microporous%20Bicarbazole%E2%80%90Based%20Covalent%20Triazine%20Frameworks%20for%20High%E2%80%90Performance%20Energy%20Storage%20and%20Carbon%20Dioxide%20Uptake&rft.jtitle=ChemPlusChem%20(Weinheim,%20Germany)&rft.au=Mohamed,%20Mohamed%20Gamal&rft.date=2019-11&rft.volume=84&rft.issue=11&rft.spage=1767&rft.epage=1774&rft.pages=1767-1774&rft.issn=2192-6506&rft.eissn=2192-6506&rft_id=info:doi/10.1002/cplu.201900635&rft_dat=%3Cproquest_cross%3E2319124980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319124980&rft_id=info:pmid/31943884&rfr_iscdi=true |