Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake

In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemPlusChem (Weinheim, Germany) Germany), 2019-11, Vol.84 (11), p.1767-1774
Hauptverfasser: Mohamed, Mohamed Gamal, EL‐Mahdy, Ahmed F. M., Ahmed, Mahmoud M. M., Kuo, Shiao‐Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1774
container_issue 11
container_start_page 1767
container_title ChemPlusChem (Weinheim, Germany)
container_volume 84
creator Mohamed, Mohamed Gamal
EL‐Mahdy, Ahmed F. M.
Ahmed, Mahmoud M. M.
Kuo, Shiao‐Wei
description In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). The electrochemical performances of this Car‐CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2. The other Car‐CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance. Carbazole captures: A series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from Car‐4CN in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possess excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). One sample showed excellent electrochemical performance of 545 F/g at 5 mV/s and highest CO2 uptake capacities of 3.91 and 7.60 mmol/g at 298 and 273 K, respectively.Microporous bicarbazole‐based covalent triazine frameworks for high‐performance energy storage and carbon dioxide uptake (Kuo et al.)
doi_str_mv 10.1002/cplu.201900635
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339791898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319124980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-312ed45f038ab59c18ad94139bcf5e05c808e0c4a599249ac669e5868ae2dab73</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EolXplSOyxIXLLv4TZ-0j3bYUaRGV2j1HE2eydZvYwU4o2xOP0GfkSXC1pSAuzMVj6fOnGf8Iec3ZnDMm3tuhm-aCccNYKdUzsi-4EbNSsfL5X_0eOUzpmuUqmRIL-ZLsSW4KqXWxT-6PXUQ70outH68wuURDSz87G8MQYpgSPXIWYg13ocOfP-6PIGFDl-EbdOhHehkd3DmP9DRCj7ch3iTahkjP3OYq0-cY860Hb5GeeIybLb0YQ4QNUvBZk8XB02MXvrsG6XoY4QZfkRctdAkPH88Dsj49uVyezVZfPn5afljNrFxINZNcYFOolkkNtTKWa2hMwaWpbauQKauZRmYLUMaIwoAtS4NKlxpQNFAv5AF5t_MOMXydMI1V75LFrgOPee9KSGkWhmujM_r2H_Q6TNHn6TLFDc9-zTI131H571KK2FZDdD3EbcVZ9RBX9RBX9RRXfvDmUTvVPTZP-O9wMmB2wK3rcPsfXbU8X63_yH8BpaKk5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319124980</pqid></control><display><type>article</type><title>Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mohamed, Mohamed Gamal ; EL‐Mahdy, Ahmed F. M. ; Ahmed, Mahmoud M. M. ; Kuo, Shiao‐Wei</creator><creatorcontrib>Mohamed, Mohamed Gamal ; EL‐Mahdy, Ahmed F. M. ; Ahmed, Mahmoud M. M. ; Kuo, Shiao‐Wei</creatorcontrib><description>In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). The electrochemical performances of this Car‐CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2. The other Car‐CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance. Carbazole captures: A series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from Car‐4CN in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possess excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). One sample showed excellent electrochemical performance of 545 F/g at 5 mV/s and highest CO2 uptake capacities of 3.91 and 7.60 mmol/g at 298 and 273 K, respectively.Microporous bicarbazole‐based covalent triazine frameworks for high‐performance energy storage and carbon dioxide uptake (Kuo et al.)</description><identifier>ISSN: 2192-6506</identifier><identifier>EISSN: 2192-6506</identifier><identifier>DOI: 10.1002/cplu.201900635</identifier><identifier>PMID: 31943884</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>carbazole ; Carbon dioxide ; carbon dioxide capture ; Chemistry ; covalent triazine frameworks ; Electrochemistry ; Energy storage ; microporous polymers ; supercapacitors ; Zinc ; Zinc chloride</subject><ispartof>ChemPlusChem (Weinheim, Germany), 2019-11, Vol.84 (11), p.1767-1774</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-312ed45f038ab59c18ad94139bcf5e05c808e0c4a599249ac669e5868ae2dab73</citedby><cites>FETCH-LOGICAL-c3735-312ed45f038ab59c18ad94139bcf5e05c808e0c4a599249ac669e5868ae2dab73</cites><orcidid>0000-0002-4306-7171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcplu.201900635$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcplu.201900635$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohamed, Mohamed Gamal</creatorcontrib><creatorcontrib>EL‐Mahdy, Ahmed F. M.</creatorcontrib><creatorcontrib>Ahmed, Mahmoud M. M.</creatorcontrib><creatorcontrib>Kuo, Shiao‐Wei</creatorcontrib><title>Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake</title><title>ChemPlusChem (Weinheim, Germany)</title><addtitle>Chempluschem</addtitle><description>In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). The electrochemical performances of this Car‐CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2. The other Car‐CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance. Carbazole captures: A series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from Car‐4CN in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possess excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). One sample showed excellent electrochemical performance of 545 F/g at 5 mV/s and highest CO2 uptake capacities of 3.91 and 7.60 mmol/g at 298 and 273 K, respectively.Microporous bicarbazole‐based covalent triazine frameworks for high‐performance energy storage and carbon dioxide uptake (Kuo et al.)</description><subject>carbazole</subject><subject>Carbon dioxide</subject><subject>carbon dioxide capture</subject><subject>Chemistry</subject><subject>covalent triazine frameworks</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>microporous polymers</subject><subject>supercapacitors</subject><subject>Zinc</subject><subject>Zinc chloride</subject><issn>2192-6506</issn><issn>2192-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhy0EolXplSOyxIXLLv4TZ-0j3bYUaRGV2j1HE2eydZvYwU4o2xOP0GfkSXC1pSAuzMVj6fOnGf8Iec3ZnDMm3tuhm-aCccNYKdUzsi-4EbNSsfL5X_0eOUzpmuUqmRIL-ZLsSW4KqXWxT-6PXUQ70outH68wuURDSz87G8MQYpgSPXIWYg13ocOfP-6PIGFDl-EbdOhHehkd3DmP9DRCj7ch3iTahkjP3OYq0-cY860Hb5GeeIybLb0YQ4QNUvBZk8XB02MXvrsG6XoY4QZfkRctdAkPH88Dsj49uVyezVZfPn5afljNrFxINZNcYFOolkkNtTKWa2hMwaWpbauQKauZRmYLUMaIwoAtS4NKlxpQNFAv5AF5t_MOMXydMI1V75LFrgOPee9KSGkWhmujM_r2H_Q6TNHn6TLFDc9-zTI131H571KK2FZDdD3EbcVZ9RBX9RBX9RRXfvDmUTvVPTZP-O9wMmB2wK3rcPsfXbU8X63_yH8BpaKk5w</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Mohamed, Mohamed Gamal</creator><creator>EL‐Mahdy, Ahmed F. M.</creator><creator>Ahmed, Mahmoud M. M.</creator><creator>Kuo, Shiao‐Wei</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4306-7171</orcidid></search><sort><creationdate>201911</creationdate><title>Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake</title><author>Mohamed, Mohamed Gamal ; EL‐Mahdy, Ahmed F. M. ; Ahmed, Mahmoud M. M. ; Kuo, Shiao‐Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-312ed45f038ab59c18ad94139bcf5e05c808e0c4a599249ac669e5868ae2dab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>carbazole</topic><topic>Carbon dioxide</topic><topic>carbon dioxide capture</topic><topic>Chemistry</topic><topic>covalent triazine frameworks</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>microporous polymers</topic><topic>supercapacitors</topic><topic>Zinc</topic><topic>Zinc chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohamed, Mohamed Gamal</creatorcontrib><creatorcontrib>EL‐Mahdy, Ahmed F. M.</creatorcontrib><creatorcontrib>Ahmed, Mahmoud M. M.</creatorcontrib><creatorcontrib>Kuo, Shiao‐Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>MEDLINE - Academic</collection><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed, Mohamed Gamal</au><au>EL‐Mahdy, Ahmed F. M.</au><au>Ahmed, Mahmoud M. M.</au><au>Kuo, Shiao‐Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake</atitle><jtitle>ChemPlusChem (Weinheim, Germany)</jtitle><addtitle>Chempluschem</addtitle><date>2019-11</date><risdate>2019</risdate><volume>84</volume><issue>11</issue><spage>1767</spage><epage>1774</epage><pages>1767-1774</pages><issn>2192-6506</issn><eissn>2192-6506</eissn><abstract>In this study a series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from [9,9'‐bicarbazole]‐3,3',6,6'‐tetracarbonitrile (Car‐4CN) in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possessed excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). The electrochemical performances of this Car‐CTF series, investigated by using cyclic voltammetry, showed a highest capacitance of (545 F/g at 5 mV/s), which also exhibited excellent columbic efficiencies of 96.1 % after 8000 cycles at 100 μA/0.5 cm2. The other Car‐CTF samples displayed similar efficiencies. Furthermore, based on CO2 uptake measurements, one of the series showed the highest CO2 uptake capacities: 3.91 and 7.60 mmol/g at 298 and 273 K, respectively. These results suggest a simple method for the preparation of CTF materials that provide excellent electrochemical and CO2 uptake performance. Carbazole captures: A series of bicarbazole‐based covalent triazine frameworks (Car‐CTFs) were synthesized under ionothermal conditions from Car‐4CN in the presence of molten zinc chloride. Thermogravimetric and Brunauer−Emmett−Teller analyses revealed that these Car‐CTFs possess excellent thermal stabilities and high specific surface areas (ca. 1400 m2/g). One sample showed excellent electrochemical performance of 545 F/g at 5 mV/s and highest CO2 uptake capacities of 3.91 and 7.60 mmol/g at 298 and 273 K, respectively.Microporous bicarbazole‐based covalent triazine frameworks for high‐performance energy storage and carbon dioxide uptake (Kuo et al.)</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>31943884</pmid><doi>10.1002/cplu.201900635</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4306-7171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-6506
ispartof ChemPlusChem (Weinheim, Germany), 2019-11, Vol.84 (11), p.1767-1774
issn 2192-6506
2192-6506
language eng
recordid cdi_proquest_miscellaneous_2339791898
source Wiley Online Library Journals Frontfile Complete
subjects carbazole
Carbon dioxide
carbon dioxide capture
Chemistry
covalent triazine frameworks
Electrochemistry
Energy storage
microporous polymers
supercapacitors
Zinc
Zinc chloride
title Direct Synthesis of Microporous Bicarbazole‐Based Covalent Triazine Frameworks for High‐Performance Energy Storage and Carbon Dioxide Uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Synthesis%20of%20Microporous%20Bicarbazole%E2%80%90Based%20Covalent%20Triazine%20Frameworks%20for%20High%E2%80%90Performance%20Energy%20Storage%20and%20Carbon%20Dioxide%20Uptake&rft.jtitle=ChemPlusChem%20(Weinheim,%20Germany)&rft.au=Mohamed,%20Mohamed%20Gamal&rft.date=2019-11&rft.volume=84&rft.issue=11&rft.spage=1767&rft.epage=1774&rft.pages=1767-1774&rft.issn=2192-6506&rft.eissn=2192-6506&rft_id=info:doi/10.1002/cplu.201900635&rft_dat=%3Cproquest_cross%3E2319124980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319124980&rft_id=info:pmid/31943884&rfr_iscdi=true