Tailoring a Zinc Oxide Nanorod Surface by Adding an Earth‐Abundant Cocatalyst for Induced Sunlight Water Oxidation

Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2020-03, Vol.21 (6), p.476-483
Hauptverfasser: Almeida, Rafael M., Ferrari, Victoria C., S. Souza, Juliana, Souza, Flavio L., Alves, Wendel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 6
container_start_page 476
container_title Chemphyschem
container_volume 21
creator Almeida, Rafael M.
Ferrari, Victoria C.
S. Souza, Juliana
Souza, Flavio L.
Alves, Wendel A.
description Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin‐coating deposition method, and it was found that 6‐layer deposition of glycine‐FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine‐FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine‐FeOOH nanoparticle is suitable and environmentally‐friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation. The use of FeOOH nanoparticles as a cocatalyst for nanostructured zinc oxide electrodes improves the oxygen evolution reaction in solar water splitting. The use of glycine as a dispersive agent for the nanoparticles leads to a homogeneous catalytic surface. The bulk and surface electronic contributions to the photoelectrochemistry are carefully studied.
doi_str_mv 10.1002/cphc.201901171
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339791861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377245226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4101-ea624c5af566e6dcadc01daaf62bf44035bf4348ea397a3d97bc226081ca879f3</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxhtR3HX16lECXhZkxlSSTncfh2Z1FxZXcEXw0lQn6Z0sPcmYpNG5-Qg-o09i5o8jeFEoqDr8vo-q-oriOdA5UMpeq_VSzRmFhgJU8KA4BcGbWSUFPDzMgvHypHgS4z2ltKYVPC5OODSCS8FPi3SLdvTBujuC5LN1itx8s9qQd-h88Jp8mMKAypB-QxZa7zBHLjCk5c_vPxb95DS6RFqvMOG4iYkMPpArpydltmI32rtlIp8wmbBzxmS9e1o8GnCM5tmhnxUf31zctpez65u3V-3ieqYEUJgZlEyoEodSSiO1Qq0oaMRBsn4QgvIyNy5qg7ypkOum6hVjktagsK6agZ8V53vfdfBfJhNTt7JRmXFEZ_wUO8azsIFaQkZf_oXe-ym4vF2mqoqJMjtnar6nVPAxBjN062BXGDYd0G6bR7fNozvmkQUvDrZTvzL6iP8OIAP1Hvhqej9EZY1T5ojlxErIBSJPFFqbdv9r_eRSlr76f2mmmwNtR7P5x95d-_6y_XPFLzWMuIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377245226</pqid></control><display><type>article</type><title>Tailoring a Zinc Oxide Nanorod Surface by Adding an Earth‐Abundant Cocatalyst for Induced Sunlight Water Oxidation</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Almeida, Rafael M. ; Ferrari, Victoria C. ; S. Souza, Juliana ; Souza, Flavio L. ; Alves, Wendel A.</creator><creatorcontrib>Almeida, Rafael M. ; Ferrari, Victoria C. ; S. Souza, Juliana ; Souza, Flavio L. ; Alves, Wendel A.</creatorcontrib><description>Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin‐coating deposition method, and it was found that 6‐layer deposition of glycine‐FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine‐FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine‐FeOOH nanoparticle is suitable and environmentally‐friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation. The use of FeOOH nanoparticles as a cocatalyst for nanostructured zinc oxide electrodes improves the oxygen evolution reaction in solar water splitting. The use of glycine as a dispersive agent for the nanoparticles leads to a homogeneous catalytic surface. The bulk and surface electronic contributions to the photoelectrochemistry are carefully studied.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201901171</identifier><identifier>PMID: 31943643</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>catalytic efficiency ; Charge efficiency ; Chemical reactions ; Chemistry ; Chemistry, Physical ; Density ; Deposition ; Earth surface ; Electrodes ; Electromagnetic absorption ; FeOOH nanoparticles ; Glycine ; Irradiation ; Metal oxides ; Nanoparticles ; Nanorods ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; Photoelectric effect ; Photoelectric emission ; Physical Sciences ; Physics ; Physics, Atomic, Molecular &amp; Chemical ; Science &amp; Technology ; Separation ; solar water splitting ; Sunlight ; Zinc oxide ; Zinc oxides</subject><ispartof>Chemphyschem, 2020-03, Vol.21 (6), p.476-483</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000510511400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4101-ea624c5af566e6dcadc01daaf62bf44035bf4348ea397a3d97bc226081ca879f3</citedby><cites>FETCH-LOGICAL-c4101-ea624c5af566e6dcadc01daaf62bf44035bf4348ea397a3d97bc226081ca879f3</cites><orcidid>0000-0002-8394-2751 ; 0000-0002-9545-5918 ; 0000-0003-2036-9123 ; 0000-0003-3448-5045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201901171$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201901171$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,28253,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida, Rafael M.</creatorcontrib><creatorcontrib>Ferrari, Victoria C.</creatorcontrib><creatorcontrib>S. Souza, Juliana</creatorcontrib><creatorcontrib>Souza, Flavio L.</creatorcontrib><creatorcontrib>Alves, Wendel A.</creatorcontrib><title>Tailoring a Zinc Oxide Nanorod Surface by Adding an Earth‐Abundant Cocatalyst for Induced Sunlight Water Oxidation</title><title>Chemphyschem</title><addtitle>CHEMPHYSCHEM</addtitle><addtitle>Chemphyschem</addtitle><description>Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin‐coating deposition method, and it was found that 6‐layer deposition of glycine‐FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine‐FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine‐FeOOH nanoparticle is suitable and environmentally‐friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation. The use of FeOOH nanoparticles as a cocatalyst for nanostructured zinc oxide electrodes improves the oxygen evolution reaction in solar water splitting. The use of glycine as a dispersive agent for the nanoparticles leads to a homogeneous catalytic surface. The bulk and surface electronic contributions to the photoelectrochemistry are carefully studied.</description><subject>catalytic efficiency</subject><subject>Charge efficiency</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Density</subject><subject>Deposition</subject><subject>Earth surface</subject><subject>Electrodes</subject><subject>Electromagnetic absorption</subject><subject>FeOOH nanoparticles</subject><subject>Glycine</subject><subject>Irradiation</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular &amp; Chemical</subject><subject>Science &amp; Technology</subject><subject>Separation</subject><subject>solar water splitting</subject><subject>Sunlight</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc-KFDEQxhtR3HX16lECXhZkxlSSTncfh2Z1FxZXcEXw0lQn6Z0sPcmYpNG5-Qg-o09i5o8jeFEoqDr8vo-q-oriOdA5UMpeq_VSzRmFhgJU8KA4BcGbWSUFPDzMgvHypHgS4z2ltKYVPC5OODSCS8FPi3SLdvTBujuC5LN1itx8s9qQd-h88Jp8mMKAypB-QxZa7zBHLjCk5c_vPxb95DS6RFqvMOG4iYkMPpArpydltmI32rtlIp8wmbBzxmS9e1o8GnCM5tmhnxUf31zctpez65u3V-3ieqYEUJgZlEyoEodSSiO1Qq0oaMRBsn4QgvIyNy5qg7ypkOum6hVjktagsK6agZ8V53vfdfBfJhNTt7JRmXFEZ_wUO8azsIFaQkZf_oXe-ym4vF2mqoqJMjtnar6nVPAxBjN062BXGDYd0G6bR7fNozvmkQUvDrZTvzL6iP8OIAP1Hvhqej9EZY1T5ojlxErIBSJPFFqbdv9r_eRSlr76f2mmmwNtR7P5x95d-_6y_XPFLzWMuIc</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Almeida, Rafael M.</creator><creator>Ferrari, Victoria C.</creator><creator>S. Souza, Juliana</creator><creator>Souza, Flavio L.</creator><creator>Alves, Wendel A.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8394-2751</orcidid><orcidid>https://orcid.org/0000-0002-9545-5918</orcidid><orcidid>https://orcid.org/0000-0003-2036-9123</orcidid><orcidid>https://orcid.org/0000-0003-3448-5045</orcidid></search><sort><creationdate>20200317</creationdate><title>Tailoring a Zinc Oxide Nanorod Surface by Adding an Earth‐Abundant Cocatalyst for Induced Sunlight Water Oxidation</title><author>Almeida, Rafael M. ; Ferrari, Victoria C. ; S. Souza, Juliana ; Souza, Flavio L. ; Alves, Wendel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4101-ea624c5af566e6dcadc01daaf62bf44035bf4348ea397a3d97bc226081ca879f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>catalytic efficiency</topic><topic>Charge efficiency</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Density</topic><topic>Deposition</topic><topic>Earth surface</topic><topic>Electrodes</topic><topic>Electromagnetic absorption</topic><topic>FeOOH nanoparticles</topic><topic>Glycine</topic><topic>Irradiation</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular &amp; Chemical</topic><topic>Science &amp; Technology</topic><topic>Separation</topic><topic>solar water splitting</topic><topic>Sunlight</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Rafael M.</creatorcontrib><creatorcontrib>Ferrari, Victoria C.</creatorcontrib><creatorcontrib>S. Souza, Juliana</creatorcontrib><creatorcontrib>Souza, Flavio L.</creatorcontrib><creatorcontrib>Alves, Wendel A.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Rafael M.</au><au>Ferrari, Victoria C.</au><au>S. Souza, Juliana</au><au>Souza, Flavio L.</au><au>Alves, Wendel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring a Zinc Oxide Nanorod Surface by Adding an Earth‐Abundant Cocatalyst for Induced Sunlight Water Oxidation</atitle><jtitle>Chemphyschem</jtitle><stitle>CHEMPHYSCHEM</stitle><addtitle>Chemphyschem</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>21</volume><issue>6</issue><spage>476</spage><epage>483</epage><pages>476-483</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin‐coating deposition method, and it was found that 6‐layer deposition of glycine‐FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine‐FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine‐FeOOH nanoparticle is suitable and environmentally‐friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation. The use of FeOOH nanoparticles as a cocatalyst for nanostructured zinc oxide electrodes improves the oxygen evolution reaction in solar water splitting. The use of glycine as a dispersive agent for the nanoparticles leads to a homogeneous catalytic surface. The bulk and surface electronic contributions to the photoelectrochemistry are carefully studied.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>31943643</pmid><doi>10.1002/cphc.201901171</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8394-2751</orcidid><orcidid>https://orcid.org/0000-0002-9545-5918</orcidid><orcidid>https://orcid.org/0000-0003-2036-9123</orcidid><orcidid>https://orcid.org/0000-0003-3448-5045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2020-03, Vol.21 (6), p.476-483
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_2339791861
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects catalytic efficiency
Charge efficiency
Chemical reactions
Chemistry
Chemistry, Physical
Density
Deposition
Earth surface
Electrodes
Electromagnetic absorption
FeOOH nanoparticles
Glycine
Irradiation
Metal oxides
Nanoparticles
Nanorods
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
Photoelectric effect
Photoelectric emission
Physical Sciences
Physics
Physics, Atomic, Molecular & Chemical
Science & Technology
Separation
solar water splitting
Sunlight
Zinc oxide
Zinc oxides
title Tailoring a Zinc Oxide Nanorod Surface by Adding an Earth‐Abundant Cocatalyst for Induced Sunlight Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T10%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20a%20Zinc%20Oxide%20Nanorod%20Surface%20by%20Adding%20an%20Earth%E2%80%90Abundant%20Cocatalyst%20for%20Induced%20Sunlight%20Water%20Oxidation&rft.jtitle=Chemphyschem&rft.au=Almeida,%20Rafael%20M.&rft.date=2020-03-17&rft.volume=21&rft.issue=6&rft.spage=476&rft.epage=483&rft.pages=476-483&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201901171&rft_dat=%3Cproquest_webof%3E2377245226%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377245226&rft_id=info:pmid/31943643&rfr_iscdi=true