Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach

Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-02, Vol.92 (3), p.2859-2865
Hauptverfasser: Wang, Yufei, Gordon, Emma, Ren, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2865
container_issue 3
container_start_page 2859
container_title Analytical chemistry (Washington)
container_volume 92
creator Wang, Yufei
Gordon, Emma
Ren, Hang
description Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode–electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode–electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities.
doi_str_mv 10.1021/acs.analchem.9b05502
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339791703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339791703</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-7ca6c35616e4c0f96d1163e90a3f3a0bef98c499498eeb11b2dd1b6350f243ed3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EokvhDRCyxIVLlvGfOPFxtSqlUis4wIVLNHEmXVfZJNjeSnuDZ-ANeRK87LYHDpzGGn2_30j-GHstYClAivfo4hJHHNyGtkvbQlmCfMIWopRQmLqWT9kCAFQhK4Az9iLGOwAhQJjn7EwJq4U09YL9vMF59uMtTxvin6dEY_I48Knn3yhMfL3BcEscx45fDORSmBwmHPbJO75yyd_7tD_AN5S3v3_8OkEZIH41Jgo9OuL3Hjnyy4B-LNp98ffBV_McJnSbl-xZj0OkV6d5zr5-uPiy_lhcf7q8Wq-uC9SVTUXl0DhVGmFIO-it6YQwiiyg6hVCS72tnbZW25qoFaKVXSdao0ropVbUqXP27tibz37fUUzN1kdHw4AjTbvYSKVsZUUFKqNv_0Hvpl3If32gSllaZbTOlD5SLkwxBuqbOfgthn0joDkoarKi5kFRc1KUY29O5bt2S91j6MFJBuAIHOKPh__b-Qfq0KHR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352593644</pqid></control><display><type>article</type><title>Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach</title><source>American Chemical Society Journals</source><creator>Wang, Yufei ; Gordon, Emma ; Ren, Hang</creator><creatorcontrib>Wang, Yufei ; Gordon, Emma ; Ren, Hang</creatorcontrib><description>Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode–electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode–electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b05502</identifier><identifier>PMID: 31941268</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Correlation analysis ; Crystal structure ; Crystals ; Electric fields ; Electrochemical cells ; Electrochemistry ; Electrodes ; Electrolytes ; Electron backscatter diffraction ; Energy storage ; Grain orientation ; Hydrogen evolution reactions ; Interfaces ; Mapping ; Polycrystals ; Single crystals ; Surface properties</subject><ispartof>Analytical chemistry (Washington), 2020-02, Vol.92 (3), p.2859-2865</ispartof><rights>Copyright American Chemical Society Feb 4, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-7ca6c35616e4c0f96d1163e90a3f3a0bef98c499498eeb11b2dd1b6350f243ed3</citedby><cites>FETCH-LOGICAL-a479t-7ca6c35616e4c0f96d1163e90a3f3a0bef98c499498eeb11b2dd1b6350f243ed3</cites><orcidid>0000-0002-9480-8881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b05502$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b05502$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31941268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yufei</creatorcontrib><creatorcontrib>Gordon, Emma</creatorcontrib><creatorcontrib>Ren, Hang</creatorcontrib><title>Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode–electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode–electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities.</description><subject>Chemistry</subject><subject>Correlation analysis</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron backscatter diffraction</subject><subject>Energy storage</subject><subject>Grain orientation</subject><subject>Hydrogen evolution reactions</subject><subject>Interfaces</subject><subject>Mapping</subject><subject>Polycrystals</subject><subject>Single crystals</subject><subject>Surface properties</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhy0EokvhDRCyxIVLlvGfOPFxtSqlUis4wIVLNHEmXVfZJNjeSnuDZ-ANeRK87LYHDpzGGn2_30j-GHstYClAivfo4hJHHNyGtkvbQlmCfMIWopRQmLqWT9kCAFQhK4Az9iLGOwAhQJjn7EwJq4U09YL9vMF59uMtTxvin6dEY_I48Knn3yhMfL3BcEscx45fDORSmBwmHPbJO75yyd_7tD_AN5S3v3_8OkEZIH41Jgo9OuL3Hjnyy4B-LNp98ffBV_McJnSbl-xZj0OkV6d5zr5-uPiy_lhcf7q8Wq-uC9SVTUXl0DhVGmFIO-it6YQwiiyg6hVCS72tnbZW25qoFaKVXSdao0ropVbUqXP27tibz37fUUzN1kdHw4AjTbvYSKVsZUUFKqNv_0Hvpl3If32gSllaZbTOlD5SLkwxBuqbOfgthn0joDkoarKi5kFRc1KUY29O5bt2S91j6MFJBuAIHOKPh__b-Qfq0KHR</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Wang, Yufei</creator><creator>Gordon, Emma</creator><creator>Ren, Hang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9480-8881</orcidid></search><sort><creationdate>20200204</creationdate><title>Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach</title><author>Wang, Yufei ; Gordon, Emma ; Ren, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-7ca6c35616e4c0f96d1163e90a3f3a0bef98c499498eeb11b2dd1b6350f243ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Correlation analysis</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron backscatter diffraction</topic><topic>Energy storage</topic><topic>Grain orientation</topic><topic>Hydrogen evolution reactions</topic><topic>Interfaces</topic><topic>Mapping</topic><topic>Polycrystals</topic><topic>Single crystals</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yufei</creatorcontrib><creatorcontrib>Gordon, Emma</creatorcontrib><creatorcontrib>Ren, Hang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yufei</au><au>Gordon, Emma</au><au>Ren, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>92</volume><issue>3</issue><spage>2859</spage><epage>2865</epage><pages>2859-2865</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode–electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode–electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31941268</pmid><doi>10.1021/acs.analchem.9b05502</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9480-8881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-02, Vol.92 (3), p.2859-2865
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2339791703
source American Chemical Society Journals
subjects Chemistry
Correlation analysis
Crystal structure
Crystals
Electric fields
Electrochemical cells
Electrochemistry
Electrodes
Electrolytes
Electron backscatter diffraction
Energy storage
Grain orientation
Hydrogen evolution reactions
Interfaces
Mapping
Polycrystals
Single crystals
Surface properties
title Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Potential%20of%20Zero%20Charge%20and%20Electrocatalytic%20Activity%20of%20Metal%E2%80%93Electrolyte%20Interface%20via%20a%20Grain-by-Grain%20Approach&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Yufei&rft.date=2020-02-04&rft.volume=92&rft.issue=3&rft.spage=2859&rft.epage=2865&rft.pages=2859-2865&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b05502&rft_dat=%3Cproquest_cross%3E2339791703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352593644&rft_id=info:pmid/31941268&rfr_iscdi=true