Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach
Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical ener...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-02, Vol.92 (3), p.2859-2865 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2865 |
---|---|
container_issue | 3 |
container_start_page | 2859 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Wang, Yufei Gordon, Emma Ren, Hang |
description | Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode–electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode–electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities. |
doi_str_mv | 10.1021/acs.analchem.9b05502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339791703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339791703</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-7ca6c35616e4c0f96d1163e90a3f3a0bef98c499498eeb11b2dd1b6350f243ed3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0EokvhDRCyxIVLlvGfOPFxtSqlUis4wIVLNHEmXVfZJNjeSnuDZ-ANeRK87LYHDpzGGn2_30j-GHstYClAivfo4hJHHNyGtkvbQlmCfMIWopRQmLqWT9kCAFQhK4Az9iLGOwAhQJjn7EwJq4U09YL9vMF59uMtTxvin6dEY_I48Knn3yhMfL3BcEscx45fDORSmBwmHPbJO75yyd_7tD_AN5S3v3_8OkEZIH41Jgo9OuL3Hjnyy4B-LNp98ffBV_McJnSbl-xZj0OkV6d5zr5-uPiy_lhcf7q8Wq-uC9SVTUXl0DhVGmFIO-it6YQwiiyg6hVCS72tnbZW25qoFaKVXSdao0ropVbUqXP27tibz37fUUzN1kdHw4AjTbvYSKVsZUUFKqNv_0Hvpl3If32gSllaZbTOlD5SLkwxBuqbOfgthn0joDkoarKi5kFRc1KUY29O5bt2S91j6MFJBuAIHOKPh__b-Qfq0KHR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352593644</pqid></control><display><type>article</type><title>Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach</title><source>American Chemical Society Journals</source><creator>Wang, Yufei ; Gordon, Emma ; Ren, Hang</creator><creatorcontrib>Wang, Yufei ; Gordon, Emma ; Ren, Hang</creatorcontrib><description>Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode–electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode–electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b05502</identifier><identifier>PMID: 31941268</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Correlation analysis ; Crystal structure ; Crystals ; Electric fields ; Electrochemical cells ; Electrochemistry ; Electrodes ; Electrolytes ; Electron backscatter diffraction ; Energy storage ; Grain orientation ; Hydrogen evolution reactions ; Interfaces ; Mapping ; Polycrystals ; Single crystals ; Surface properties</subject><ispartof>Analytical chemistry (Washington), 2020-02, Vol.92 (3), p.2859-2865</ispartof><rights>Copyright American Chemical Society Feb 4, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-7ca6c35616e4c0f96d1163e90a3f3a0bef98c499498eeb11b2dd1b6350f243ed3</citedby><cites>FETCH-LOGICAL-a479t-7ca6c35616e4c0f96d1163e90a3f3a0bef98c499498eeb11b2dd1b6350f243ed3</cites><orcidid>0000-0002-9480-8881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b05502$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b05502$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31941268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yufei</creatorcontrib><creatorcontrib>Gordon, Emma</creatorcontrib><creatorcontrib>Ren, Hang</creatorcontrib><title>Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode–electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode–electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities.</description><subject>Chemistry</subject><subject>Correlation analysis</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Electric fields</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron backscatter diffraction</subject><subject>Energy storage</subject><subject>Grain orientation</subject><subject>Hydrogen evolution reactions</subject><subject>Interfaces</subject><subject>Mapping</subject><subject>Polycrystals</subject><subject>Single crystals</subject><subject>Surface properties</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhy0EokvhDRCyxIVLlvGfOPFxtSqlUis4wIVLNHEmXVfZJNjeSnuDZ-ANeRK87LYHDpzGGn2_30j-GHstYClAivfo4hJHHNyGtkvbQlmCfMIWopRQmLqWT9kCAFQhK4Az9iLGOwAhQJjn7EwJq4U09YL9vMF59uMtTxvin6dEY_I48Knn3yhMfL3BcEscx45fDORSmBwmHPbJO75yyd_7tD_AN5S3v3_8OkEZIH41Jgo9OuL3Hjnyy4B-LNp98ffBV_McJnSbl-xZj0OkV6d5zr5-uPiy_lhcf7q8Wq-uC9SVTUXl0DhVGmFIO-it6YQwiiyg6hVCS72tnbZW25qoFaKVXSdao0ropVbUqXP27tibz37fUUzN1kdHw4AjTbvYSKVsZUUFKqNv_0Hvpl3If32gSllaZbTOlD5SLkwxBuqbOfgthn0joDkoarKi5kFRc1KUY29O5bt2S91j6MFJBuAIHOKPh__b-Qfq0KHR</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Wang, Yufei</creator><creator>Gordon, Emma</creator><creator>Ren, Hang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9480-8881</orcidid></search><sort><creationdate>20200204</creationdate><title>Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach</title><author>Wang, Yufei ; Gordon, Emma ; Ren, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-7ca6c35616e4c0f96d1163e90a3f3a0bef98c499498eeb11b2dd1b6350f243ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Correlation analysis</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Electric fields</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron backscatter diffraction</topic><topic>Energy storage</topic><topic>Grain orientation</topic><topic>Hydrogen evolution reactions</topic><topic>Interfaces</topic><topic>Mapping</topic><topic>Polycrystals</topic><topic>Single crystals</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yufei</creatorcontrib><creatorcontrib>Gordon, Emma</creatorcontrib><creatorcontrib>Ren, Hang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yufei</au><au>Gordon, Emma</au><au>Ren, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>92</volume><issue>3</issue><spage>2859</spage><epage>2865</epage><pages>2859-2865</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Potential of zero charge (PZC) is a fundamental quantity that dictates the structure of the electrical double layer. Studies using single crystals suggest a polycrystalline surface should display an inhomogeneous distribution of PZC and electric field, which directly affects the electrochemical energy storage and conversion processes occurring at the electrode–electrolyte interface. Herein, we demonstrate the direct mapping of local PZC using scanning electrochemical cell microscopy (SECCM). The potential-dependent charging current upon the formation of the microscopic electrode–electrolyte interface is used to determine the PZC. Using polycrystalline Pt as a model system, correlative SECCM and electron backscatter diffraction (EBSD) images show the dependence of PZC on the local crystal grain orientation. The electrocatalytic activity can be mapped from the same SECCM experiment via local voltammetry, which demonstrates the variation of hydrogen evolution reaction (HER) activity across Pt grains. The method reported here can be readily applied to study other electrochemical interfaces, providing rich correlative information on the surface property and electrocatalytic activities.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31941268</pmid><doi>10.1021/acs.analchem.9b05502</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9480-8881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-02, Vol.92 (3), p.2859-2865 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2339791703 |
source | American Chemical Society Journals |
subjects | Chemistry Correlation analysis Crystal structure Crystals Electric fields Electrochemical cells Electrochemistry Electrodes Electrolytes Electron backscatter diffraction Energy storage Grain orientation Hydrogen evolution reactions Interfaces Mapping Polycrystals Single crystals Surface properties |
title | Mapping the Potential of Zero Charge and Electrocatalytic Activity of Metal–Electrolyte Interface via a Grain-by-Grain Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Potential%20of%20Zero%20Charge%20and%20Electrocatalytic%20Activity%20of%20Metal%E2%80%93Electrolyte%20Interface%20via%20a%20Grain-by-Grain%20Approach&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Yufei&rft.date=2020-02-04&rft.volume=92&rft.issue=3&rft.spage=2859&rft.epage=2865&rft.pages=2859-2865&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b05502&rft_dat=%3Cproquest_cross%3E2339791703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352593644&rft_id=info:pmid/31941268&rfr_iscdi=true |