Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets

Integrated optically inspired wave‐based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-03, Vol.32 (9), p.e1906439-n/a
Hauptverfasser: Albisetti, Edoardo, Tacchi, Silvia, Silvani, Raffaele, Scaramuzzi, Giuseppe, Finizio, Simone, Wintz, Sebastian, Rinaldi, Christian, Cantoni, Matteo, Raabe, Jörg, Carlotti, Giovanni, Bertacco, Riccardo, Riedo, Elisa, Petti, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e1906439
container_title Advanced materials (Weinheim)
container_volume 32
creator Albisetti, Edoardo
Tacchi, Silvia
Silvani, Raffaele
Scaramuzzi, Giuseppe
Finizio, Simone
Wintz, Sebastian
Rinaldi, Christian
Cantoni, Matteo
Raabe, Jörg
Carlotti, Giovanni
Bertacco, Riccardo
Riedo, Elisa
Petti, Daniela
description Integrated optically inspired wave‐based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength. In particular, magnonic nanoantennas based on tailored spin textures are used for launching spatially shaped coherent wavefronts, diffraction‐limited spin‐wave beams, and generating robust multi‐beam interference patterns, which spatially extend for several times the spin‐wave wavelength. Furthermore, it is shown that intriguing features, such as resilience to back reflection, naturally arise from the spin‐wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step toward the realization of nanoscale optically inspired devices based on spin waves. Wavefront engineering, focusing, and multibeam interference of nonreciprocal spin waves are demonstrated by using spin‐texture‐based magnonic nanoantennas in synthetic antiferromagnets. Scanning transmission X‐ray microscopy experiments show the controlled emission and propagation of short‐wavelength spin waves for a distance of several wavelengths. Micromagnetic modeling of the angular‐dependent nonreciprocal spin‐wave modes in synthetic antiferromagnets and excitation mechanism supports the conclusions.
doi_str_mv 10.1002/adma.201906439
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339789755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369747238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-d999e0f7d8f51db9abe140dcff777cbdd6f46c419926e52aa84916395665d1123</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOj62LqXgxk3HpHn1Lgff4GOh4kYomSTVSJvWpOMw_97o-AA3ru5dfOfjcBDaJXhMMC4OlWnVuMAEsGAUVtCI8ILkDANfRSMMlOcgWLmBNmN8wRiDwGIdbVACjDFCR-jxph-cVk2zyC587F2wJrtWvmvVk--80zGbu-E5u-58sNr1oUtsdts7nz2oNxuz9Nwu_PBskyWb-MHVNoTPtB3iNlqrVRPtztfdQvenJ3dH5_nlzdnF0eQy11RSyA0AWFxLU9acmCmoqSUMG13XUko9NUbUTGhGAApheaFUyYAIClwIbggp6BY6WHpTv9eZjUPVuqht0yhvu1msCkpBliA5T-j-H_SlmwWf2iVKgGSyoGWixktKhy7GYOuqD65VYVERXH3sXn3sXv3sngJ7X9rZtLXmB_8eOgGwBOausYt_dNXk-GryK38H3C-Pjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369747238</pqid></control><display><type>article</type><title>Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets</title><source>Access via Wiley Online Library</source><creator>Albisetti, Edoardo ; Tacchi, Silvia ; Silvani, Raffaele ; Scaramuzzi, Giuseppe ; Finizio, Simone ; Wintz, Sebastian ; Rinaldi, Christian ; Cantoni, Matteo ; Raabe, Jörg ; Carlotti, Giovanni ; Bertacco, Riccardo ; Riedo, Elisa ; Petti, Daniela</creator><creatorcontrib>Albisetti, Edoardo ; Tacchi, Silvia ; Silvani, Raffaele ; Scaramuzzi, Giuseppe ; Finizio, Simone ; Wintz, Sebastian ; Rinaldi, Christian ; Cantoni, Matteo ; Raabe, Jörg ; Carlotti, Giovanni ; Bertacco, Riccardo ; Riedo, Elisa ; Petti, Daniela</creatorcontrib><description>Integrated optically inspired wave‐based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength. In particular, magnonic nanoantennas based on tailored spin textures are used for launching spatially shaped coherent wavefronts, diffraction‐limited spin‐wave beams, and generating robust multi‐beam interference patterns, which spatially extend for several times the spin‐wave wavelength. Furthermore, it is shown that intriguing features, such as resilience to back reflection, naturally arise from the spin‐wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step toward the realization of nanoscale optically inspired devices based on spin waves. Wavefront engineering, focusing, and multibeam interference of nonreciprocal spin waves are demonstrated by using spin‐texture‐based magnonic nanoantennas in synthetic antiferromagnets. Scanning transmission X‐ray microscopy experiments show the controlled emission and propagation of short‐wavelength spin waves for a distance of several wavelengths. Micromagnetic modeling of the angular‐dependent nonreciprocal spin‐wave modes in synthetic antiferromagnets and excitation mechanism supports the conclusions.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201906439</identifier><identifier>PMID: 31944413</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Antiferromagnetism ; Beams (radiation) ; Diffraction patterns ; Digital imaging ; Frequency ranges ; Image processing ; Interference ; Magnons ; nanomagnonics ; Object recognition ; Phenomenology ; Robustness ; scanning probe lithography ; scanning transmission X‐ray microscopy ; Speech recognition ; spin textures ; spin waves ; synthetic antiferromagnet ; Wave diffraction ; Wave fronts</subject><ispartof>Advanced materials (Weinheim), 2020-03, Vol.32 (9), p.e1906439-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-d999e0f7d8f51db9abe140dcff777cbdd6f46c419926e52aa84916395665d1123</citedby><cites>FETCH-LOGICAL-c3739-d999e0f7d8f51db9abe140dcff777cbdd6f46c419926e52aa84916395665d1123</cites><orcidid>0000-0002-8134-0482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201906439$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201906439$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31944413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albisetti, Edoardo</creatorcontrib><creatorcontrib>Tacchi, Silvia</creatorcontrib><creatorcontrib>Silvani, Raffaele</creatorcontrib><creatorcontrib>Scaramuzzi, Giuseppe</creatorcontrib><creatorcontrib>Finizio, Simone</creatorcontrib><creatorcontrib>Wintz, Sebastian</creatorcontrib><creatorcontrib>Rinaldi, Christian</creatorcontrib><creatorcontrib>Cantoni, Matteo</creatorcontrib><creatorcontrib>Raabe, Jörg</creatorcontrib><creatorcontrib>Carlotti, Giovanni</creatorcontrib><creatorcontrib>Bertacco, Riccardo</creatorcontrib><creatorcontrib>Riedo, Elisa</creatorcontrib><creatorcontrib>Petti, Daniela</creatorcontrib><title>Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Integrated optically inspired wave‐based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength. In particular, magnonic nanoantennas based on tailored spin textures are used for launching spatially shaped coherent wavefronts, diffraction‐limited spin‐wave beams, and generating robust multi‐beam interference patterns, which spatially extend for several times the spin‐wave wavelength. Furthermore, it is shown that intriguing features, such as resilience to back reflection, naturally arise from the spin‐wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step toward the realization of nanoscale optically inspired devices based on spin waves. Wavefront engineering, focusing, and multibeam interference of nonreciprocal spin waves are demonstrated by using spin‐texture‐based magnonic nanoantennas in synthetic antiferromagnets. Scanning transmission X‐ray microscopy experiments show the controlled emission and propagation of short‐wavelength spin waves for a distance of several wavelengths. Micromagnetic modeling of the angular‐dependent nonreciprocal spin‐wave modes in synthetic antiferromagnets and excitation mechanism supports the conclusions.</description><subject>Antiferromagnetism</subject><subject>Beams (radiation)</subject><subject>Diffraction patterns</subject><subject>Digital imaging</subject><subject>Frequency ranges</subject><subject>Image processing</subject><subject>Interference</subject><subject>Magnons</subject><subject>nanomagnonics</subject><subject>Object recognition</subject><subject>Phenomenology</subject><subject>Robustness</subject><subject>scanning probe lithography</subject><subject>scanning transmission X‐ray microscopy</subject><subject>Speech recognition</subject><subject>spin textures</subject><subject>spin waves</subject><subject>synthetic antiferromagnet</subject><subject>Wave diffraction</subject><subject>Wave fronts</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOj62LqXgxk3HpHn1Lgff4GOh4kYomSTVSJvWpOMw_97o-AA3ru5dfOfjcBDaJXhMMC4OlWnVuMAEsGAUVtCI8ILkDANfRSMMlOcgWLmBNmN8wRiDwGIdbVACjDFCR-jxph-cVk2zyC587F2wJrtWvmvVk--80zGbu-E5u-58sNr1oUtsdts7nz2oNxuz9Nwu_PBskyWb-MHVNoTPtB3iNlqrVRPtztfdQvenJ3dH5_nlzdnF0eQy11RSyA0AWFxLU9acmCmoqSUMG13XUko9NUbUTGhGAApheaFUyYAIClwIbggp6BY6WHpTv9eZjUPVuqht0yhvu1msCkpBliA5T-j-H_SlmwWf2iVKgGSyoGWixktKhy7GYOuqD65VYVERXH3sXn3sXv3sngJ7X9rZtLXmB_8eOgGwBOausYt_dNXk-GryK38H3C-Pjg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Albisetti, Edoardo</creator><creator>Tacchi, Silvia</creator><creator>Silvani, Raffaele</creator><creator>Scaramuzzi, Giuseppe</creator><creator>Finizio, Simone</creator><creator>Wintz, Sebastian</creator><creator>Rinaldi, Christian</creator><creator>Cantoni, Matteo</creator><creator>Raabe, Jörg</creator><creator>Carlotti, Giovanni</creator><creator>Bertacco, Riccardo</creator><creator>Riedo, Elisa</creator><creator>Petti, Daniela</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8134-0482</orcidid></search><sort><creationdate>20200301</creationdate><title>Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets</title><author>Albisetti, Edoardo ; Tacchi, Silvia ; Silvani, Raffaele ; Scaramuzzi, Giuseppe ; Finizio, Simone ; Wintz, Sebastian ; Rinaldi, Christian ; Cantoni, Matteo ; Raabe, Jörg ; Carlotti, Giovanni ; Bertacco, Riccardo ; Riedo, Elisa ; Petti, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-d999e0f7d8f51db9abe140dcff777cbdd6f46c419926e52aa84916395665d1123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiferromagnetism</topic><topic>Beams (radiation)</topic><topic>Diffraction patterns</topic><topic>Digital imaging</topic><topic>Frequency ranges</topic><topic>Image processing</topic><topic>Interference</topic><topic>Magnons</topic><topic>nanomagnonics</topic><topic>Object recognition</topic><topic>Phenomenology</topic><topic>Robustness</topic><topic>scanning probe lithography</topic><topic>scanning transmission X‐ray microscopy</topic><topic>Speech recognition</topic><topic>spin textures</topic><topic>spin waves</topic><topic>synthetic antiferromagnet</topic><topic>Wave diffraction</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albisetti, Edoardo</creatorcontrib><creatorcontrib>Tacchi, Silvia</creatorcontrib><creatorcontrib>Silvani, Raffaele</creatorcontrib><creatorcontrib>Scaramuzzi, Giuseppe</creatorcontrib><creatorcontrib>Finizio, Simone</creatorcontrib><creatorcontrib>Wintz, Sebastian</creatorcontrib><creatorcontrib>Rinaldi, Christian</creatorcontrib><creatorcontrib>Cantoni, Matteo</creatorcontrib><creatorcontrib>Raabe, Jörg</creatorcontrib><creatorcontrib>Carlotti, Giovanni</creatorcontrib><creatorcontrib>Bertacco, Riccardo</creatorcontrib><creatorcontrib>Riedo, Elisa</creatorcontrib><creatorcontrib>Petti, Daniela</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albisetti, Edoardo</au><au>Tacchi, Silvia</au><au>Silvani, Raffaele</au><au>Scaramuzzi, Giuseppe</au><au>Finizio, Simone</au><au>Wintz, Sebastian</au><au>Rinaldi, Christian</au><au>Cantoni, Matteo</au><au>Raabe, Jörg</au><au>Carlotti, Giovanni</au><au>Bertacco, Riccardo</au><au>Riedo, Elisa</au><au>Petti, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><spage>e1906439</spage><epage>n/a</epage><pages>e1906439-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Integrated optically inspired wave‐based processing is envisioned to outperform digital architectures in specific tasks, such as image processing and speech recognition. In this view, spin waves represent a promising route due to their nanoscale wavelength in the gigahertz frequency range and rich phenomenology. Here, a versatile, optically inspired platform using spin waves is realized, demonstrating the wavefront engineering, focusing, and robust interference of spin waves with nanoscale wavelength. In particular, magnonic nanoantennas based on tailored spin textures are used for launching spatially shaped coherent wavefronts, diffraction‐limited spin‐wave beams, and generating robust multi‐beam interference patterns, which spatially extend for several times the spin‐wave wavelength. Furthermore, it is shown that intriguing features, such as resilience to back reflection, naturally arise from the spin‐wave nonreciprocity in synthetic antiferromagnets, preserving the high quality of the interference patterns from spurious counterpropagating modes. This work represents a fundamental step toward the realization of nanoscale optically inspired devices based on spin waves. Wavefront engineering, focusing, and multibeam interference of nonreciprocal spin waves are demonstrated by using spin‐texture‐based magnonic nanoantennas in synthetic antiferromagnets. Scanning transmission X‐ray microscopy experiments show the controlled emission and propagation of short‐wavelength spin waves for a distance of several wavelengths. Micromagnetic modeling of the angular‐dependent nonreciprocal spin‐wave modes in synthetic antiferromagnets and excitation mechanism supports the conclusions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31944413</pmid><doi>10.1002/adma.201906439</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8134-0482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-03, Vol.32 (9), p.e1906439-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2339789755
source Access via Wiley Online Library
subjects Antiferromagnetism
Beams (radiation)
Diffraction patterns
Digital imaging
Frequency ranges
Image processing
Interference
Magnons
nanomagnonics
Object recognition
Phenomenology
Robustness
scanning probe lithography
scanning transmission X‐ray microscopy
Speech recognition
spin textures
spin waves
synthetic antiferromagnet
Wave diffraction
Wave fronts
title Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Inspired%20Nanomagnonics%20with%20Nonreciprocal%20Spin%20Waves%20in%20Synthetic%20Antiferromagnets&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Albisetti,%20Edoardo&rft.date=2020-03-01&rft.volume=32&rft.issue=9&rft.spage=e1906439&rft.epage=n/a&rft.pages=e1906439-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201906439&rft_dat=%3Cproquest_cross%3E2369747238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369747238&rft_id=info:pmid/31944413&rfr_iscdi=true