Ontogenetic changes in the targets of natural selection in three plant defenses

• The evolution of plant defenses has traditionally been studied at single plant ontogenetic stages, overlooking the fact that natural selection acts continuously on organisms along their development, and that the adaptive value of phenotypes can change along ontogeny. • We exposed 20 replicated gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2020-06, Vol.226 (5), p.1480-1491
Hauptverfasser: Ochoa-López, Sofía, Damián, Xóchitl, Rebollo, Roberto, Fornoni, Juan, Domínguez, César A., Boege, Karina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1491
container_issue 5
container_start_page 1480
container_title The New phytologist
container_volume 226
creator Ochoa-López, Sofía
Damián, Xóchitl
Rebollo, Roberto
Fornoni, Juan
Domínguez, César A.
Boege, Karina
description • The evolution of plant defenses has traditionally been studied at single plant ontogenetic stages, overlooking the fact that natural selection acts continuously on organisms along their development, and that the adaptive value of phenotypes can change along ontogeny. • We exposed 20 replicated genotypes of Turnera velutina to field conditions to evaluate whether the targets of natural selection on different defenses and their adaptative value change across plant development. • We found that low chemical defense was favored in seedlings, which seems to be explained by the assimilation efficiency and the ability of the specialist herbivore to sequester cyanogenic glycosides. Whereas trichome density was unfavored in juvenile plants, it increased relative plant fitness in reproductive plants. At this stage we also found a positive correlative gradient between cyanogenic potential and sugar content in extrafloral nectar. • We visualize this complex multi-trait combination as an ontogenetic defensive strategy. The inclusion of whole-plant ontogeny as a key source of variation in plant defense revealed that the targets and intensity of selection change along the development of plants, indicating that the influence of natural selection cannot be inferred without the assessment of ontogenetic strategies in the expression of multiple defenses.
doi_str_mv 10.1111/nph.16422
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339789223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26914643</jstor_id><sourcerecordid>26914643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-ec7363ddc75f039af92112dde28297069023e6ce8b2150652450513623ea12d3</originalsourceid><addsrcrecordid>eNp1kU9Lw0AQxRdRbK0e_ADKghc9pN0_ySZ7lKJWKNZDD97CdjNpU9JN3d0g_faupu1BcC4Pht88Hm8QuqZkSMOMzHY1pCJm7AT1aSxklFGenqI-ISyLRCw-eujCuTUhRCaCnaMepzLmjNI-ms2Mb5ZgwFca65UyS3C4MtivAHtll-AdbkpslG-tqrGDGrSvGtMxFgBva2U8LqAE48BdorNS1Q6u9jpA8-en-XgSTWcvr-PHaaTjVLAIdMoFLwqdJiXhUpUypGFFASxjMiVCEsZBaMgWjCZEJCxOSEK5CFsVOD5A953t1jafLTifbyqnoQ5ZoGldzjiXaSZZ0AG6-4Oum9aaEC5QUiQyJlQG6qGjtG2cs1DmW1ttlN3llOQ_Jeeh5Py35MDe7h3bxQaKI3loNQCjDviqatj975S_vU8Oljfdxdr5xh4vmJDhnzHn3_RqjaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396594019</pqid></control><display><type>article</type><title>Ontogenetic changes in the targets of natural selection in three plant defenses</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Ochoa-López, Sofía ; Damián, Xóchitl ; Rebollo, Roberto ; Fornoni, Juan ; Domínguez, César A. ; Boege, Karina</creator><creatorcontrib>Ochoa-López, Sofía ; Damián, Xóchitl ; Rebollo, Roberto ; Fornoni, Juan ; Domínguez, César A. ; Boege, Karina</creatorcontrib><description>• The evolution of plant defenses has traditionally been studied at single plant ontogenetic stages, overlooking the fact that natural selection acts continuously on organisms along their development, and that the adaptive value of phenotypes can change along ontogeny. • We exposed 20 replicated genotypes of Turnera velutina to field conditions to evaluate whether the targets of natural selection on different defenses and their adaptative value change across plant development. • We found that low chemical defense was favored in seedlings, which seems to be explained by the assimilation efficiency and the ability of the specialist herbivore to sequester cyanogenic glycosides. Whereas trichome density was unfavored in juvenile plants, it increased relative plant fitness in reproductive plants. At this stage we also found a positive correlative gradient between cyanogenic potential and sugar content in extrafloral nectar. • We visualize this complex multi-trait combination as an ontogenetic defensive strategy. The inclusion of whole-plant ontogeny as a key source of variation in plant defense revealed that the targets and intensity of selection change along the development of plants, indicating that the influence of natural selection cannot be inferred without the assessment of ontogenetic strategies in the expression of multiple defenses.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16422</identifier><identifier>PMID: 31943211</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Chemical defense ; cyanogenic potential ; defense strategies ; extrafloral nectar ; Genotypes ; Glycosides ; Herbivores ; Herbivory ; Natural selection ; Nectar ; ontogenetic trajectories ; Ontogeny ; Phenotype ; Phenotypes ; Plant Leaves ; Plant Nectar ; Planting density ; Plants ; Saccharides ; Seedlings ; Selection, Genetic ; trichome density ; Turnera velutina</subject><ispartof>The New phytologist, 2020-06, Vol.226 (5), p.1480-1491</ispartof><rights>2020 The Authors © 2020 New Phytologist Trust</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Trust</rights><rights>2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</rights><rights>Copyright © 2020 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-ec7363ddc75f039af92112dde28297069023e6ce8b2150652450513623ea12d3</citedby><cites>FETCH-LOGICAL-c4762-ec7363ddc75f039af92112dde28297069023e6ce8b2150652450513623ea12d3</cites><orcidid>0000-0001-7404-2260 ; 0000-0002-1129-0715 ; 0000-0002-8032-0746 ; 0000-0002-6303-0739 ; 0000-0001-8587-5129 ; 0000-0003-2971-080X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26914643$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26914643$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31943211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ochoa-López, Sofía</creatorcontrib><creatorcontrib>Damián, Xóchitl</creatorcontrib><creatorcontrib>Rebollo, Roberto</creatorcontrib><creatorcontrib>Fornoni, Juan</creatorcontrib><creatorcontrib>Domínguez, César A.</creatorcontrib><creatorcontrib>Boege, Karina</creatorcontrib><title>Ontogenetic changes in the targets of natural selection in three plant defenses</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• The evolution of plant defenses has traditionally been studied at single plant ontogenetic stages, overlooking the fact that natural selection acts continuously on organisms along their development, and that the adaptive value of phenotypes can change along ontogeny. • We exposed 20 replicated genotypes of Turnera velutina to field conditions to evaluate whether the targets of natural selection on different defenses and their adaptative value change across plant development. • We found that low chemical defense was favored in seedlings, which seems to be explained by the assimilation efficiency and the ability of the specialist herbivore to sequester cyanogenic glycosides. Whereas trichome density was unfavored in juvenile plants, it increased relative plant fitness in reproductive plants. At this stage we also found a positive correlative gradient between cyanogenic potential and sugar content in extrafloral nectar. • We visualize this complex multi-trait combination as an ontogenetic defensive strategy. The inclusion of whole-plant ontogeny as a key source of variation in plant defense revealed that the targets and intensity of selection change along the development of plants, indicating that the influence of natural selection cannot be inferred without the assessment of ontogenetic strategies in the expression of multiple defenses.</description><subject>Chemical defense</subject><subject>cyanogenic potential</subject><subject>defense strategies</subject><subject>extrafloral nectar</subject><subject>Genotypes</subject><subject>Glycosides</subject><subject>Herbivores</subject><subject>Herbivory</subject><subject>Natural selection</subject><subject>Nectar</subject><subject>ontogenetic trajectories</subject><subject>Ontogeny</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plant Leaves</subject><subject>Plant Nectar</subject><subject>Planting density</subject><subject>Plants</subject><subject>Saccharides</subject><subject>Seedlings</subject><subject>Selection, Genetic</subject><subject>trichome density</subject><subject>Turnera velutina</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9Lw0AQxRdRbK0e_ADKghc9pN0_ySZ7lKJWKNZDD97CdjNpU9JN3d0g_faupu1BcC4Pht88Hm8QuqZkSMOMzHY1pCJm7AT1aSxklFGenqI-ISyLRCw-eujCuTUhRCaCnaMepzLmjNI-ms2Mb5ZgwFca65UyS3C4MtivAHtll-AdbkpslG-tqrGDGrSvGtMxFgBva2U8LqAE48BdorNS1Q6u9jpA8-en-XgSTWcvr-PHaaTjVLAIdMoFLwqdJiXhUpUypGFFASxjMiVCEsZBaMgWjCZEJCxOSEK5CFsVOD5A953t1jafLTifbyqnoQ5ZoGldzjiXaSZZ0AG6-4Oum9aaEC5QUiQyJlQG6qGjtG2cs1DmW1ttlN3llOQ_Jeeh5Py35MDe7h3bxQaKI3loNQCjDviqatj975S_vU8Oljfdxdr5xh4vmJDhnzHn3_RqjaU</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Ochoa-López, Sofía</creator><creator>Damián, Xóchitl</creator><creator>Rebollo, Roberto</creator><creator>Fornoni, Juan</creator><creator>Domínguez, César A.</creator><creator>Boege, Karina</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7404-2260</orcidid><orcidid>https://orcid.org/0000-0002-1129-0715</orcidid><orcidid>https://orcid.org/0000-0002-8032-0746</orcidid><orcidid>https://orcid.org/0000-0002-6303-0739</orcidid><orcidid>https://orcid.org/0000-0001-8587-5129</orcidid><orcidid>https://orcid.org/0000-0003-2971-080X</orcidid></search><sort><creationdate>202006</creationdate><title>Ontogenetic changes in the targets of natural selection in three plant defenses</title><author>Ochoa-López, Sofía ; Damián, Xóchitl ; Rebollo, Roberto ; Fornoni, Juan ; Domínguez, César A. ; Boege, Karina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-ec7363ddc75f039af92112dde28297069023e6ce8b2150652450513623ea12d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical defense</topic><topic>cyanogenic potential</topic><topic>defense strategies</topic><topic>extrafloral nectar</topic><topic>Genotypes</topic><topic>Glycosides</topic><topic>Herbivores</topic><topic>Herbivory</topic><topic>Natural selection</topic><topic>Nectar</topic><topic>ontogenetic trajectories</topic><topic>Ontogeny</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plant Leaves</topic><topic>Plant Nectar</topic><topic>Planting density</topic><topic>Plants</topic><topic>Saccharides</topic><topic>Seedlings</topic><topic>Selection, Genetic</topic><topic>trichome density</topic><topic>Turnera velutina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochoa-López, Sofía</creatorcontrib><creatorcontrib>Damián, Xóchitl</creatorcontrib><creatorcontrib>Rebollo, Roberto</creatorcontrib><creatorcontrib>Fornoni, Juan</creatorcontrib><creatorcontrib>Domínguez, César A.</creatorcontrib><creatorcontrib>Boege, Karina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochoa-López, Sofía</au><au>Damián, Xóchitl</au><au>Rebollo, Roberto</au><au>Fornoni, Juan</au><au>Domínguez, César A.</au><au>Boege, Karina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ontogenetic changes in the targets of natural selection in three plant defenses</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-06</date><risdate>2020</risdate><volume>226</volume><issue>5</issue><spage>1480</spage><epage>1491</epage><pages>1480-1491</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• The evolution of plant defenses has traditionally been studied at single plant ontogenetic stages, overlooking the fact that natural selection acts continuously on organisms along their development, and that the adaptive value of phenotypes can change along ontogeny. • We exposed 20 replicated genotypes of Turnera velutina to field conditions to evaluate whether the targets of natural selection on different defenses and their adaptative value change across plant development. • We found that low chemical defense was favored in seedlings, which seems to be explained by the assimilation efficiency and the ability of the specialist herbivore to sequester cyanogenic glycosides. Whereas trichome density was unfavored in juvenile plants, it increased relative plant fitness in reproductive plants. At this stage we also found a positive correlative gradient between cyanogenic potential and sugar content in extrafloral nectar. • We visualize this complex multi-trait combination as an ontogenetic defensive strategy. The inclusion of whole-plant ontogeny as a key source of variation in plant defense revealed that the targets and intensity of selection change along the development of plants, indicating that the influence of natural selection cannot be inferred without the assessment of ontogenetic strategies in the expression of multiple defenses.</abstract><cop>England</cop><pub>Wiley</pub><pmid>31943211</pmid><doi>10.1111/nph.16422</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7404-2260</orcidid><orcidid>https://orcid.org/0000-0002-1129-0715</orcidid><orcidid>https://orcid.org/0000-0002-8032-0746</orcidid><orcidid>https://orcid.org/0000-0002-6303-0739</orcidid><orcidid>https://orcid.org/0000-0001-8587-5129</orcidid><orcidid>https://orcid.org/0000-0003-2971-080X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2020-06, Vol.226 (5), p.1480-1491
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2339789223
source MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Chemical defense
cyanogenic potential
defense strategies
extrafloral nectar
Genotypes
Glycosides
Herbivores
Herbivory
Natural selection
Nectar
ontogenetic trajectories
Ontogeny
Phenotype
Phenotypes
Plant Leaves
Plant Nectar
Planting density
Plants
Saccharides
Seedlings
Selection, Genetic
trichome density
Turnera velutina
title Ontogenetic changes in the targets of natural selection in three plant defenses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ontogenetic%20changes%20in%20the%20targets%20of%20natural%20selection%20in%20three%20plant%20defenses&rft.jtitle=The%20New%20phytologist&rft.au=Ochoa-L%C3%B3pez,%20Sof%C3%ADa&rft.date=2020-06&rft.volume=226&rft.issue=5&rft.spage=1480&rft.epage=1491&rft.pages=1480-1491&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16422&rft_dat=%3Cjstor_proqu%3E26914643%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396594019&rft_id=info:pmid/31943211&rft_jstor_id=26914643&rfr_iscdi=true