Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion
Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Sinc...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2020-02, Vol.124 (6), p.1090-1098 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1098 |
---|---|
container_issue | 6 |
container_start_page | 1090 |
container_title | The journal of physical chemistry. B |
container_volume | 124 |
creator | Watanabe, Chiho Kobori, Yuta Yamamoto, Johtaro Kinjo, Masataka Yanagisawa, Miho |
description | Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials. |
doi_str_mv | 10.1021/acs.jpcb.9b10558 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339000252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339000252</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-ee71e06c16bec510203ffc69b5f4a0c5c07b0f96692528ae0920a6a82fa215593</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0E4lHYmZBHBlKuHezWIypPqRVChZXoxlxLQYlT7ASp_x6XBjYG63r4zpHOx9ipgLEAKS7RxvHHypZjUwpQarrDDoWSkKU32R3-WoA-YEcxfgBIJad6nx3kwuQmB3nI3p579F3VYVd9Eb_2WK9jFXnr-IKaMqAnvuyDQ0sc_TtfNljXfNZ6V3lqyHf81jmyXUp4vmhrsn2Ngd9UzvWxav0x23NYRzoZ7oi93t2-zB6y-dP94-x6nuFVbrqMaCIItBW6JKvSNMids9qUyl0hWGVhUoIzWpvNAiQwElDjVDqUQimTj9j5tncV2s-eYlc0VbRU12lA28dC5rmBn_0JhS1qQxtjIFesQtVgWBcCio3VIlktNlaLwWqKnA3tfdnQ-1_gV2MCLrbAT7TtQ_IY_-_7BnzDg4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339000252</pqid></control><display><type>article</type><title>Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion</title><source>MEDLINE</source><source>ACS Publications</source><creator>Watanabe, Chiho ; Kobori, Yuta ; Yamamoto, Johtaro ; Kinjo, Masataka ; Yanagisawa, Miho</creator><creatorcontrib>Watanabe, Chiho ; Kobori, Yuta ; Yamamoto, Johtaro ; Kinjo, Masataka ; Yanagisawa, Miho</creatorcontrib><description>Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.9b10558</identifier><identifier>PMID: 31939302</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cattle ; Diffusion ; Fluorescence ; Green Fluorescent Proteins - chemistry ; Particle Size ; Polyethylene Glycols - analysis ; Serum Albumin, Bovine - chemistry ; Surface Properties</subject><ispartof>The journal of physical chemistry. B, 2020-02, Vol.124 (6), p.1090-1098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-ee71e06c16bec510203ffc69b5f4a0c5c07b0f96692528ae0920a6a82fa215593</citedby><cites>FETCH-LOGICAL-a439t-ee71e06c16bec510203ffc69b5f4a0c5c07b0f96692528ae0920a6a82fa215593</cites><orcidid>0000-0001-7872-8286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.9b10558$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.9b10558$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31939302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Chiho</creatorcontrib><creatorcontrib>Kobori, Yuta</creatorcontrib><creatorcontrib>Yamamoto, Johtaro</creatorcontrib><creatorcontrib>Kinjo, Masataka</creatorcontrib><creatorcontrib>Yanagisawa, Miho</creatorcontrib><title>Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.</description><subject>Animals</subject><subject>Cattle</subject><subject>Diffusion</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Particle Size</subject><subject>Polyethylene Glycols - analysis</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Surface Properties</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0E4lHYmZBHBlKuHezWIypPqRVChZXoxlxLQYlT7ASp_x6XBjYG63r4zpHOx9ipgLEAKS7RxvHHypZjUwpQarrDDoWSkKU32R3-WoA-YEcxfgBIJad6nx3kwuQmB3nI3p579F3VYVd9Eb_2WK9jFXnr-IKaMqAnvuyDQ0sc_TtfNljXfNZ6V3lqyHf81jmyXUp4vmhrsn2Ngd9UzvWxav0x23NYRzoZ7oi93t2-zB6y-dP94-x6nuFVbrqMaCIItBW6JKvSNMids9qUyl0hWGVhUoIzWpvNAiQwElDjVDqUQimTj9j5tncV2s-eYlc0VbRU12lA28dC5rmBn_0JhS1qQxtjIFesQtVgWBcCio3VIlktNlaLwWqKnA3tfdnQ-1_gV2MCLrbAT7TtQ_IY_-_7BnzDg4E</recordid><startdate>20200213</startdate><enddate>20200213</enddate><creator>Watanabe, Chiho</creator><creator>Kobori, Yuta</creator><creator>Yamamoto, Johtaro</creator><creator>Kinjo, Masataka</creator><creator>Yanagisawa, Miho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7872-8286</orcidid></search><sort><creationdate>20200213</creationdate><title>Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion</title><author>Watanabe, Chiho ; Kobori, Yuta ; Yamamoto, Johtaro ; Kinjo, Masataka ; Yanagisawa, Miho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-ee71e06c16bec510203ffc69b5f4a0c5c07b0f96692528ae0920a6a82fa215593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Diffusion</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Particle Size</topic><topic>Polyethylene Glycols - analysis</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Chiho</creatorcontrib><creatorcontrib>Kobori, Yuta</creatorcontrib><creatorcontrib>Yamamoto, Johtaro</creatorcontrib><creatorcontrib>Kinjo, Masataka</creatorcontrib><creatorcontrib>Yanagisawa, Miho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Chiho</au><au>Kobori, Yuta</au><au>Yamamoto, Johtaro</au><au>Kinjo, Masataka</au><au>Yanagisawa, Miho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-02-13</date><risdate>2020</risdate><volume>124</volume><issue>6</issue><spage>1090</spage><epage>1098</epage><pages>1090-1098</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31939302</pmid><doi>10.1021/acs.jpcb.9b10558</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7872-8286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2020-02, Vol.124 (6), p.1090-1098 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2339000252 |
source | MEDLINE; ACS Publications |
subjects | Animals Cattle Diffusion Fluorescence Green Fluorescent Proteins - chemistry Particle Size Polyethylene Glycols - analysis Serum Albumin, Bovine - chemistry Surface Properties |
title | Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Analysis%20of%20Membrane%20Surface%20and%20Small%20Confinement%20Effects%20on%20Molecular%20Diffusion&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Watanabe,%20Chiho&rft.date=2020-02-13&rft.volume=124&rft.issue=6&rft.spage=1090&rft.epage=1098&rft.pages=1090-1098&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.9b10558&rft_dat=%3Cproquest_cross%3E2339000252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339000252&rft_id=info:pmid/31939302&rfr_iscdi=true |