Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion

Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Sinc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-02, Vol.124 (6), p.1090-1098
Hauptverfasser: Watanabe, Chiho, Kobori, Yuta, Yamamoto, Johtaro, Kinjo, Masataka, Yanagisawa, Miho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1098
container_issue 6
container_start_page 1090
container_title The journal of physical chemistry. B
container_volume 124
creator Watanabe, Chiho
Kobori, Yuta
Yamamoto, Johtaro
Kinjo, Masataka
Yanagisawa, Miho
description Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.
doi_str_mv 10.1021/acs.jpcb.9b10558
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339000252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339000252</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-ee71e06c16bec510203ffc69b5f4a0c5c07b0f96692528ae0920a6a82fa215593</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0E4lHYmZBHBlKuHezWIypPqRVChZXoxlxLQYlT7ASp_x6XBjYG63r4zpHOx9ipgLEAKS7RxvHHypZjUwpQarrDDoWSkKU32R3-WoA-YEcxfgBIJad6nx3kwuQmB3nI3p579F3VYVd9Eb_2WK9jFXnr-IKaMqAnvuyDQ0sc_TtfNljXfNZ6V3lqyHf81jmyXUp4vmhrsn2Ngd9UzvWxav0x23NYRzoZ7oi93t2-zB6y-dP94-x6nuFVbrqMaCIItBW6JKvSNMids9qUyl0hWGVhUoIzWpvNAiQwElDjVDqUQimTj9j5tncV2s-eYlc0VbRU12lA28dC5rmBn_0JhS1qQxtjIFesQtVgWBcCio3VIlktNlaLwWqKnA3tfdnQ-1_gV2MCLrbAT7TtQ_IY_-_7BnzDg4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339000252</pqid></control><display><type>article</type><title>Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion</title><source>MEDLINE</source><source>ACS Publications</source><creator>Watanabe, Chiho ; Kobori, Yuta ; Yamamoto, Johtaro ; Kinjo, Masataka ; Yanagisawa, Miho</creator><creatorcontrib>Watanabe, Chiho ; Kobori, Yuta ; Yamamoto, Johtaro ; Kinjo, Masataka ; Yanagisawa, Miho</creatorcontrib><description>Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.9b10558</identifier><identifier>PMID: 31939302</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cattle ; Diffusion ; Fluorescence ; Green Fluorescent Proteins - chemistry ; Particle Size ; Polyethylene Glycols - analysis ; Serum Albumin, Bovine - chemistry ; Surface Properties</subject><ispartof>The journal of physical chemistry. B, 2020-02, Vol.124 (6), p.1090-1098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-ee71e06c16bec510203ffc69b5f4a0c5c07b0f96692528ae0920a6a82fa215593</citedby><cites>FETCH-LOGICAL-a439t-ee71e06c16bec510203ffc69b5f4a0c5c07b0f96692528ae0920a6a82fa215593</cites><orcidid>0000-0001-7872-8286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.9b10558$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.9b10558$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31939302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Chiho</creatorcontrib><creatorcontrib>Kobori, Yuta</creatorcontrib><creatorcontrib>Yamamoto, Johtaro</creatorcontrib><creatorcontrib>Kinjo, Masataka</creatorcontrib><creatorcontrib>Yanagisawa, Miho</creatorcontrib><title>Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.</description><subject>Animals</subject><subject>Cattle</subject><subject>Diffusion</subject><subject>Fluorescence</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Particle Size</subject><subject>Polyethylene Glycols - analysis</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Surface Properties</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0E4lHYmZBHBlKuHezWIypPqRVChZXoxlxLQYlT7ASp_x6XBjYG63r4zpHOx9ipgLEAKS7RxvHHypZjUwpQarrDDoWSkKU32R3-WoA-YEcxfgBIJad6nx3kwuQmB3nI3p579F3VYVd9Eb_2WK9jFXnr-IKaMqAnvuyDQ0sc_TtfNljXfNZ6V3lqyHf81jmyXUp4vmhrsn2Ngd9UzvWxav0x23NYRzoZ7oi93t2-zB6y-dP94-x6nuFVbrqMaCIItBW6JKvSNMids9qUyl0hWGVhUoIzWpvNAiQwElDjVDqUQimTj9j5tncV2s-eYlc0VbRU12lA28dC5rmBn_0JhS1qQxtjIFesQtVgWBcCio3VIlktNlaLwWqKnA3tfdnQ-1_gV2MCLrbAT7TtQ_IY_-_7BnzDg4E</recordid><startdate>20200213</startdate><enddate>20200213</enddate><creator>Watanabe, Chiho</creator><creator>Kobori, Yuta</creator><creator>Yamamoto, Johtaro</creator><creator>Kinjo, Masataka</creator><creator>Yanagisawa, Miho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7872-8286</orcidid></search><sort><creationdate>20200213</creationdate><title>Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion</title><author>Watanabe, Chiho ; Kobori, Yuta ; Yamamoto, Johtaro ; Kinjo, Masataka ; Yanagisawa, Miho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-ee71e06c16bec510203ffc69b5f4a0c5c07b0f96692528ae0920a6a82fa215593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Diffusion</topic><topic>Fluorescence</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Particle Size</topic><topic>Polyethylene Glycols - analysis</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Chiho</creatorcontrib><creatorcontrib>Kobori, Yuta</creatorcontrib><creatorcontrib>Yamamoto, Johtaro</creatorcontrib><creatorcontrib>Kinjo, Masataka</creatorcontrib><creatorcontrib>Yanagisawa, Miho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Chiho</au><au>Kobori, Yuta</au><au>Yamamoto, Johtaro</au><au>Kinjo, Masataka</au><au>Yanagisawa, Miho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-02-13</date><risdate>2020</risdate><volume>124</volume><issue>6</issue><spage>1090</spage><epage>1098</epage><pages>1090-1098</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31939302</pmid><doi>10.1021/acs.jpcb.9b10558</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7872-8286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2020-02, Vol.124 (6), p.1090-1098
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2339000252
source MEDLINE; ACS Publications
subjects Animals
Cattle
Diffusion
Fluorescence
Green Fluorescent Proteins - chemistry
Particle Size
Polyethylene Glycols - analysis
Serum Albumin, Bovine - chemistry
Surface Properties
title Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Analysis%20of%20Membrane%20Surface%20and%20Small%20Confinement%20Effects%20on%20Molecular%20Diffusion&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Watanabe,%20Chiho&rft.date=2020-02-13&rft.volume=124&rft.issue=6&rft.spage=1090&rft.epage=1098&rft.pages=1090-1098&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.9b10558&rft_dat=%3Cproquest_cross%3E2339000252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339000252&rft_id=info:pmid/31939302&rfr_iscdi=true