Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction
The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dis...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-01, Vol.12 (4), p.2596-2602 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2602 |
---|---|
container_issue | 4 |
container_start_page | 2596 |
container_title | Nanoscale |
container_volume | 12 |
creator | Park, Eunsol Jack, Joshua Hu, Yiming Wan, Shun Huang, Shaofeng Jin, Yinghua Maness, Pin-Ching Yazdi, Sadegh Ren, Zhiyong Zhang, Wei |
description | The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation. |
doi_str_mv | 10.1039/c9nr09112b |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338995250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348223548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-af867d569030cf65184630990fa18b8214b2f0498415bbda4abfddb310a722683</originalsourceid><addsrcrecordid>eNpd0c9vFSEQB3DSaPpLL_0DDNFL02QVGJYHR31pq0mjidHzZpYFpe7CCqxN_3v39dUePMHhwwwzX0LOOHvLGZh31sTMDOeiPyDHgknWAGzEs6e7kkfkpJRbxpQBBYfkCLgBY1p9TKZt-oOji5Wm_ANjsNRnnNxdyr-assxzytUNdB6xhrhMNGJMM-Ya7OgKxUKd98GG3Xs3OltzslhxvC-1UJ8yvcPqMs1uWGwNKb4gzz2Oxb18PE_J96vLb9uPzc2X60_b9zeNhY2pDXqtNkOrDANmvWq5lgqYMcwj170WXPbCM2m05G3fDyix98PQA2e4EUJpOCWv93VTqaErNlRnf9oU4_rFjrdGCQkrOt-jOaffiyu1m0KxbhwxurSUTgDodUmiZSt98x-9TUuO6wirkloIaOWu68Ve2ZxKyc53cw4T5vuOs26XVLc1n78-JPVhxa8eSy795IYn-i8a-Au0xY8-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348223548</pqid></control><display><type>article</type><title>Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Park, Eunsol ; Jack, Joshua ; Hu, Yiming ; Wan, Shun ; Huang, Shaofeng ; Jin, Yinghua ; Maness, Pin-Ching ; Yazdi, Sadegh ; Ren, Zhiyong ; Zhang, Wei</creator><creatorcontrib>Park, Eunsol ; Jack, Joshua ; Hu, Yiming ; Wan, Shun ; Huang, Shaofeng ; Jin, Yinghua ; Maness, Pin-Ching ; Yazdi, Sadegh ; Ren, Zhiyong ; Zhang, Wei ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr09112b</identifier><identifier>PMID: 31939958</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>30 DIRECT ENERGY CONVERSION ; Chemical reduction ; Clean fuels ; Dispersion ; electrocatalysis ; Electrocatalysts ; Hydrides ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Nanoparticles ; Nitrophenol ; Platinum ; platinum nanoparticles</subject><ispartof>Nanoscale, 2020-01, Vol.12 (4), p.2596-2602</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-af867d569030cf65184630990fa18b8214b2f0498415bbda4abfddb310a722683</citedby><cites>FETCH-LOGICAL-c379t-af867d569030cf65184630990fa18b8214b2f0498415bbda4abfddb310a722683</cites><orcidid>0000-0002-5491-1155 ; 0000-0001-7606-0331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31939958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1596243$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Eunsol</creatorcontrib><creatorcontrib>Jack, Joshua</creatorcontrib><creatorcontrib>Hu, Yiming</creatorcontrib><creatorcontrib>Wan, Shun</creatorcontrib><creatorcontrib>Huang, Shaofeng</creatorcontrib><creatorcontrib>Jin, Yinghua</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Ren, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>Chemical reduction</subject><subject>Clean fuels</subject><subject>Dispersion</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Hydrides</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Nanoparticles</subject><subject>Nitrophenol</subject><subject>Platinum</subject><subject>platinum nanoparticles</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0c9vFSEQB3DSaPpLL_0DDNFL02QVGJYHR31pq0mjidHzZpYFpe7CCqxN_3v39dUePMHhwwwzX0LOOHvLGZh31sTMDOeiPyDHgknWAGzEs6e7kkfkpJRbxpQBBYfkCLgBY1p9TKZt-oOji5Wm_ANjsNRnnNxdyr-assxzytUNdB6xhrhMNGJMM-Ya7OgKxUKd98GG3Xs3OltzslhxvC-1UJ8yvcPqMs1uWGwNKb4gzz2Oxb18PE_J96vLb9uPzc2X60_b9zeNhY2pDXqtNkOrDANmvWq5lgqYMcwj170WXPbCM2m05G3fDyix98PQA2e4EUJpOCWv93VTqaErNlRnf9oU4_rFjrdGCQkrOt-jOaffiyu1m0KxbhwxurSUTgDodUmiZSt98x-9TUuO6wirkloIaOWu68Ve2ZxKyc53cw4T5vuOs26XVLc1n78-JPVhxa8eSy795IYn-i8a-Au0xY8-</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Park, Eunsol</creator><creator>Jack, Joshua</creator><creator>Hu, Yiming</creator><creator>Wan, Shun</creator><creator>Huang, Shaofeng</creator><creator>Jin, Yinghua</creator><creator>Maness, Pin-Ching</creator><creator>Yazdi, Sadegh</creator><creator>Ren, Zhiyong</creator><creator>Zhang, Wei</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5491-1155</orcidid><orcidid>https://orcid.org/0000-0001-7606-0331</orcidid></search><sort><creationdate>20200128</creationdate><title>Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction</title><author>Park, Eunsol ; Jack, Joshua ; Hu, Yiming ; Wan, Shun ; Huang, Shaofeng ; Jin, Yinghua ; Maness, Pin-Ching ; Yazdi, Sadegh ; Ren, Zhiyong ; Zhang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-af867d569030cf65184630990fa18b8214b2f0498415bbda4abfddb310a722683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>Chemical reduction</topic><topic>Clean fuels</topic><topic>Dispersion</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Hydrides</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Nanoparticles</topic><topic>Nitrophenol</topic><topic>Platinum</topic><topic>platinum nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Eunsol</creatorcontrib><creatorcontrib>Jack, Joshua</creatorcontrib><creatorcontrib>Hu, Yiming</creatorcontrib><creatorcontrib>Wan, Shun</creatorcontrib><creatorcontrib>Huang, Shaofeng</creatorcontrib><creatorcontrib>Jin, Yinghua</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Ren, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Eunsol</au><au>Jack, Joshua</au><au>Hu, Yiming</au><au>Wan, Shun</au><au>Huang, Shaofeng</au><au>Jin, Yinghua</au><au>Maness, Pin-Ching</au><au>Yazdi, Sadegh</au><au>Ren, Zhiyong</au><au>Zhang, Wei</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>2596</spage><epage>2602</epage><pages>2596-2602</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31939958</pmid><doi>10.1039/c9nr09112b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5491-1155</orcidid><orcidid>https://orcid.org/0000-0001-7606-0331</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-01, Vol.12 (4), p.2596-2602 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2338995250 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | 30 DIRECT ENERGY CONVERSION Chemical reduction Clean fuels Dispersion electrocatalysis Electrocatalysts Hydrides hydrogen evolution reaction Hydrogen evolution reactions Nanoparticles Nitrophenol Platinum platinum nanoparticles |
title | Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covalent%20organic%20framework-supported%20platinum%20nanoparticles%20as%20efficient%20electrocatalysts%20for%20water%20reduction&rft.jtitle=Nanoscale&rft.au=Park,%20Eunsol&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-01-28&rft.volume=12&rft.issue=4&rft.spage=2596&rft.epage=2602&rft.pages=2596-2602&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr09112b&rft_dat=%3Cproquest_osti_%3E2348223548%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348223548&rft_id=info:pmid/31939958&rfr_iscdi=true |