Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction

The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-01, Vol.12 (4), p.2596-2602
Hauptverfasser: Park, Eunsol, Jack, Joshua, Hu, Yiming, Wan, Shun, Huang, Shaofeng, Jin, Yinghua, Maness, Pin-Ching, Yazdi, Sadegh, Ren, Zhiyong, Zhang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2602
container_issue 4
container_start_page 2596
container_title Nanoscale
container_volume 12
creator Park, Eunsol
Jack, Joshua
Hu, Yiming
Wan, Shun
Huang, Shaofeng
Jin, Yinghua
Maness, Pin-Ching
Yazdi, Sadegh
Ren, Zhiyong
Zhang, Wei
description The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.
doi_str_mv 10.1039/c9nr09112b
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338995250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348223548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-af867d569030cf65184630990fa18b8214b2f0498415bbda4abfddb310a722683</originalsourceid><addsrcrecordid>eNpd0c9vFSEQB3DSaPpLL_0DDNFL02QVGJYHR31pq0mjidHzZpYFpe7CCqxN_3v39dUePMHhwwwzX0LOOHvLGZh31sTMDOeiPyDHgknWAGzEs6e7kkfkpJRbxpQBBYfkCLgBY1p9TKZt-oOji5Wm_ANjsNRnnNxdyr-assxzytUNdB6xhrhMNGJMM-Ya7OgKxUKd98GG3Xs3OltzslhxvC-1UJ8yvcPqMs1uWGwNKb4gzz2Oxb18PE_J96vLb9uPzc2X60_b9zeNhY2pDXqtNkOrDANmvWq5lgqYMcwj170WXPbCM2m05G3fDyix98PQA2e4EUJpOCWv93VTqaErNlRnf9oU4_rFjrdGCQkrOt-jOaffiyu1m0KxbhwxurSUTgDodUmiZSt98x-9TUuO6wirkloIaOWu68Ve2ZxKyc53cw4T5vuOs26XVLc1n78-JPVhxa8eSy795IYn-i8a-Au0xY8-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348223548</pqid></control><display><type>article</type><title>Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Park, Eunsol ; Jack, Joshua ; Hu, Yiming ; Wan, Shun ; Huang, Shaofeng ; Jin, Yinghua ; Maness, Pin-Ching ; Yazdi, Sadegh ; Ren, Zhiyong ; Zhang, Wei</creator><creatorcontrib>Park, Eunsol ; Jack, Joshua ; Hu, Yiming ; Wan, Shun ; Huang, Shaofeng ; Jin, Yinghua ; Maness, Pin-Ching ; Yazdi, Sadegh ; Ren, Zhiyong ; Zhang, Wei ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr09112b</identifier><identifier>PMID: 31939958</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>30 DIRECT ENERGY CONVERSION ; Chemical reduction ; Clean fuels ; Dispersion ; electrocatalysis ; Electrocatalysts ; Hydrides ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Nanoparticles ; Nitrophenol ; Platinum ; platinum nanoparticles</subject><ispartof>Nanoscale, 2020-01, Vol.12 (4), p.2596-2602</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-af867d569030cf65184630990fa18b8214b2f0498415bbda4abfddb310a722683</citedby><cites>FETCH-LOGICAL-c379t-af867d569030cf65184630990fa18b8214b2f0498415bbda4abfddb310a722683</cites><orcidid>0000-0002-5491-1155 ; 0000-0001-7606-0331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31939958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1596243$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Eunsol</creatorcontrib><creatorcontrib>Jack, Joshua</creatorcontrib><creatorcontrib>Hu, Yiming</creatorcontrib><creatorcontrib>Wan, Shun</creatorcontrib><creatorcontrib>Huang, Shaofeng</creatorcontrib><creatorcontrib>Jin, Yinghua</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Ren, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>Chemical reduction</subject><subject>Clean fuels</subject><subject>Dispersion</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Hydrides</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Nanoparticles</subject><subject>Nitrophenol</subject><subject>Platinum</subject><subject>platinum nanoparticles</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0c9vFSEQB3DSaPpLL_0DDNFL02QVGJYHR31pq0mjidHzZpYFpe7CCqxN_3v39dUePMHhwwwzX0LOOHvLGZh31sTMDOeiPyDHgknWAGzEs6e7kkfkpJRbxpQBBYfkCLgBY1p9TKZt-oOji5Wm_ANjsNRnnNxdyr-assxzytUNdB6xhrhMNGJMM-Ya7OgKxUKd98GG3Xs3OltzslhxvC-1UJ8yvcPqMs1uWGwNKb4gzz2Oxb18PE_J96vLb9uPzc2X60_b9zeNhY2pDXqtNkOrDANmvWq5lgqYMcwj170WXPbCM2m05G3fDyix98PQA2e4EUJpOCWv93VTqaErNlRnf9oU4_rFjrdGCQkrOt-jOaffiyu1m0KxbhwxurSUTgDodUmiZSt98x-9TUuO6wirkloIaOWu68Ve2ZxKyc53cw4T5vuOs26XVLc1n78-JPVhxa8eSy795IYn-i8a-Au0xY8-</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Park, Eunsol</creator><creator>Jack, Joshua</creator><creator>Hu, Yiming</creator><creator>Wan, Shun</creator><creator>Huang, Shaofeng</creator><creator>Jin, Yinghua</creator><creator>Maness, Pin-Ching</creator><creator>Yazdi, Sadegh</creator><creator>Ren, Zhiyong</creator><creator>Zhang, Wei</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5491-1155</orcidid><orcidid>https://orcid.org/0000-0001-7606-0331</orcidid></search><sort><creationdate>20200128</creationdate><title>Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction</title><author>Park, Eunsol ; Jack, Joshua ; Hu, Yiming ; Wan, Shun ; Huang, Shaofeng ; Jin, Yinghua ; Maness, Pin-Ching ; Yazdi, Sadegh ; Ren, Zhiyong ; Zhang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-af867d569030cf65184630990fa18b8214b2f0498415bbda4abfddb310a722683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>Chemical reduction</topic><topic>Clean fuels</topic><topic>Dispersion</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Hydrides</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Nanoparticles</topic><topic>Nitrophenol</topic><topic>Platinum</topic><topic>platinum nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Eunsol</creatorcontrib><creatorcontrib>Jack, Joshua</creatorcontrib><creatorcontrib>Hu, Yiming</creatorcontrib><creatorcontrib>Wan, Shun</creatorcontrib><creatorcontrib>Huang, Shaofeng</creatorcontrib><creatorcontrib>Jin, Yinghua</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Ren, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Eunsol</au><au>Jack, Joshua</au><au>Hu, Yiming</au><au>Wan, Shun</au><au>Huang, Shaofeng</au><au>Jin, Yinghua</au><au>Maness, Pin-Ching</au><au>Yazdi, Sadegh</au><au>Ren, Zhiyong</au><au>Zhang, Wei</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>2596</spage><epage>2602</epage><pages>2596-2602</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31939958</pmid><doi>10.1039/c9nr09112b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5491-1155</orcidid><orcidid>https://orcid.org/0000-0001-7606-0331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-01, Vol.12 (4), p.2596-2602
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2338995250
source Royal Society Of Chemistry Journals 2008-
subjects 30 DIRECT ENERGY CONVERSION
Chemical reduction
Clean fuels
Dispersion
electrocatalysis
Electrocatalysts
Hydrides
hydrogen evolution reaction
Hydrogen evolution reactions
Nanoparticles
Nitrophenol
Platinum
platinum nanoparticles
title Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covalent%20organic%20framework-supported%20platinum%20nanoparticles%20as%20efficient%20electrocatalysts%20for%20water%20reduction&rft.jtitle=Nanoscale&rft.au=Park,%20Eunsol&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-01-28&rft.volume=12&rft.issue=4&rft.spage=2596&rft.epage=2602&rft.pages=2596-2602&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr09112b&rft_dat=%3Cproquest_osti_%3E2348223548%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348223548&rft_id=info:pmid/31939958&rfr_iscdi=true