Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production
Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H 2 O 2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatal...
Gespeichert in:
Veröffentlicht in: | Nature materials 2020-04, Vol.19 (4), p.436-442 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 4 |
container_start_page | 436 |
container_title | Nature materials |
container_volume | 19 |
creator | Jung, Euiyeon Shin, Heejong Lee, Byoung-Hoon Efremov, Vladimir Lee, Suhyeong Lee, Hyeon Seok Kim, Jiheon Hooch Antink, Wytse Park, Subin Lee, Kug-Seung Cho, Sung-Pyo Yoo, Jong Suk Sung, Yung-Eun Hyeon, Taeghwan |
description | Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H
2
O
2
can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N
4
moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N
4
moiety incorporated in nitrogen-doped graphene for H
2
O
2
production and exhibits a kinetic current density of 2.8 mA cm
−2
(at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g
−1
(at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours.
Producing H
2
O
2
electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H
2
O
2
production. |
doi_str_mv | 10.1038/s41563-019-0571-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338085582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338085582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-3a6275b500d440ba477ca82b4c60d62dc355e0399b3ef820d502c0d2a1f9c0693</originalsourceid><addsrcrecordid>eNp9kU1KBDEQhRtRUEcP4C7gxk20Uvnp9FIG_0B0o-uQSadneujpjEm34M47eENPYoYRBEEXRb3F914VvKI4YXDOgOuLJJhUnAKrKMiSUblTHDBRKiqUgt1vzRjifnGY0hIAmZTqoDCXQ1i1jnb-1XdkGPu2n5PQkGn4fP94yDMlzg62e0sDaUIki3a-oGsfs17Z3nniO--GGNzC5xjbkVt8RLKOoR7d0Ib-qNhrbJf88feeFM_XV0_TW3r_eHM3vbynTmgYKLcKSzmTALUQMLOiLJ3VOBNOQa2wdlxKD7yqZtw3GqGWgA5qtKypHKiKT4qzbW4-_TL6NJhVm5zvOtv7MCaDnGvQUmrM6OkvdBnG2OfvDIpSguCi-p_iGqtKY1lmim0pF0NK0TdmHduVjW-GgdkUY7bFmFyM2RRjZPbg1pMy2899_En-2_QFm8iQQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382998277</pqid></control><display><type>article</type><title>Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Jung, Euiyeon ; Shin, Heejong ; Lee, Byoung-Hoon ; Efremov, Vladimir ; Lee, Suhyeong ; Lee, Hyeon Seok ; Kim, Jiheon ; Hooch Antink, Wytse ; Park, Subin ; Lee, Kug-Seung ; Cho, Sung-Pyo ; Yoo, Jong Suk ; Sung, Yung-Eun ; Hyeon, Taeghwan</creator><creatorcontrib>Jung, Euiyeon ; Shin, Heejong ; Lee, Byoung-Hoon ; Efremov, Vladimir ; Lee, Suhyeong ; Lee, Hyeon Seok ; Kim, Jiheon ; Hooch Antink, Wytse ; Park, Subin ; Lee, Kug-Seung ; Cho, Sung-Pyo ; Yoo, Jong Suk ; Sung, Yung-Eun ; Hyeon, Taeghwan</creatorcontrib><description>Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H
2
O
2
can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N
4
moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N
4
moiety incorporated in nitrogen-doped graphene for H
2
O
2
production and exhibits a kinetic current density of 2.8 mA cm
−2
(at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g
−1
(at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours.
Producing H
2
O
2
electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H
2
O
2
production.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0571-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299 ; 639/638/77/886 ; Anthraquinones ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrocatalysts ; Electrochemistry ; Electrodes ; First principles ; Graphene ; Hydrogen peroxide ; Industrial development ; Industrialization ; Materials Science ; Nanotechnology ; Nitrogen ; Optical and Electronic Materials ; Oxygen reduction reactions ; Performance enhancement</subject><ispartof>Nature materials, 2020-04, Vol.19 (4), p.436-442</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-3a6275b500d440ba477ca82b4c60d62dc355e0399b3ef820d502c0d2a1f9c0693</citedby><cites>FETCH-LOGICAL-c480t-3a6275b500d440ba477ca82b4c60d62dc355e0399b3ef820d502c0d2a1f9c0693</cites><orcidid>0000-0001-5959-6257 ; 0000-0001-6472-7004 ; 0000-0002-1563-8328 ; 0000-0002-7570-8404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jung, Euiyeon</creatorcontrib><creatorcontrib>Shin, Heejong</creatorcontrib><creatorcontrib>Lee, Byoung-Hoon</creatorcontrib><creatorcontrib>Efremov, Vladimir</creatorcontrib><creatorcontrib>Lee, Suhyeong</creatorcontrib><creatorcontrib>Lee, Hyeon Seok</creatorcontrib><creatorcontrib>Kim, Jiheon</creatorcontrib><creatorcontrib>Hooch Antink, Wytse</creatorcontrib><creatorcontrib>Park, Subin</creatorcontrib><creatorcontrib>Lee, Kug-Seung</creatorcontrib><creatorcontrib>Cho, Sung-Pyo</creatorcontrib><creatorcontrib>Yoo, Jong Suk</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><title>Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H
2
O
2
can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N
4
moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N
4
moiety incorporated in nitrogen-doped graphene for H
2
O
2
production and exhibits a kinetic current density of 2.8 mA cm
−2
(at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g
−1
(at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours.
Producing H
2
O
2
electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H
2
O
2
production.</description><subject>639/301/299</subject><subject>639/638/77/886</subject><subject>Anthraquinones</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>First principles</subject><subject>Graphene</subject><subject>Hydrogen peroxide</subject><subject>Industrial development</subject><subject>Industrialization</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen reduction reactions</subject><subject>Performance enhancement</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1KBDEQhRtRUEcP4C7gxk20Uvnp9FIG_0B0o-uQSadneujpjEm34M47eENPYoYRBEEXRb3F914VvKI4YXDOgOuLJJhUnAKrKMiSUblTHDBRKiqUgt1vzRjifnGY0hIAmZTqoDCXQ1i1jnb-1XdkGPu2n5PQkGn4fP94yDMlzg62e0sDaUIki3a-oGsfs17Z3nniO--GGNzC5xjbkVt8RLKOoR7d0Ib-qNhrbJf88feeFM_XV0_TW3r_eHM3vbynTmgYKLcKSzmTALUQMLOiLJ3VOBNOQa2wdlxKD7yqZtw3GqGWgA5qtKypHKiKT4qzbW4-_TL6NJhVm5zvOtv7MCaDnGvQUmrM6OkvdBnG2OfvDIpSguCi-p_iGqtKY1lmim0pF0NK0TdmHduVjW-GgdkUY7bFmFyM2RRjZPbg1pMy2899_En-2_QFm8iQQA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jung, Euiyeon</creator><creator>Shin, Heejong</creator><creator>Lee, Byoung-Hoon</creator><creator>Efremov, Vladimir</creator><creator>Lee, Suhyeong</creator><creator>Lee, Hyeon Seok</creator><creator>Kim, Jiheon</creator><creator>Hooch Antink, Wytse</creator><creator>Park, Subin</creator><creator>Lee, Kug-Seung</creator><creator>Cho, Sung-Pyo</creator><creator>Yoo, Jong Suk</creator><creator>Sung, Yung-Eun</creator><creator>Hyeon, Taeghwan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0001-6472-7004</orcidid><orcidid>https://orcid.org/0000-0002-1563-8328</orcidid><orcidid>https://orcid.org/0000-0002-7570-8404</orcidid></search><sort><creationdate>20200401</creationdate><title>Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production</title><author>Jung, Euiyeon ; Shin, Heejong ; Lee, Byoung-Hoon ; Efremov, Vladimir ; Lee, Suhyeong ; Lee, Hyeon Seok ; Kim, Jiheon ; Hooch Antink, Wytse ; Park, Subin ; Lee, Kug-Seung ; Cho, Sung-Pyo ; Yoo, Jong Suk ; Sung, Yung-Eun ; Hyeon, Taeghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-3a6275b500d440ba477ca82b4c60d62dc355e0399b3ef820d502c0d2a1f9c0693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299</topic><topic>639/638/77/886</topic><topic>Anthraquinones</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>First principles</topic><topic>Graphene</topic><topic>Hydrogen peroxide</topic><topic>Industrial development</topic><topic>Industrialization</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen reduction reactions</topic><topic>Performance enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Euiyeon</creatorcontrib><creatorcontrib>Shin, Heejong</creatorcontrib><creatorcontrib>Lee, Byoung-Hoon</creatorcontrib><creatorcontrib>Efremov, Vladimir</creatorcontrib><creatorcontrib>Lee, Suhyeong</creatorcontrib><creatorcontrib>Lee, Hyeon Seok</creatorcontrib><creatorcontrib>Kim, Jiheon</creatorcontrib><creatorcontrib>Hooch Antink, Wytse</creatorcontrib><creatorcontrib>Park, Subin</creatorcontrib><creatorcontrib>Lee, Kug-Seung</creatorcontrib><creatorcontrib>Cho, Sung-Pyo</creatorcontrib><creatorcontrib>Yoo, Jong Suk</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Euiyeon</au><au>Shin, Heejong</au><au>Lee, Byoung-Hoon</au><au>Efremov, Vladimir</au><au>Lee, Suhyeong</au><au>Lee, Hyeon Seok</au><au>Kim, Jiheon</au><au>Hooch Antink, Wytse</au><au>Park, Subin</au><au>Lee, Kug-Seung</au><au>Cho, Sung-Pyo</au><au>Yoo, Jong Suk</au><au>Sung, Yung-Eun</au><au>Hyeon, Taeghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>19</volume><issue>4</issue><spage>436</spage><epage>442</epage><pages>436-442</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H
2
O
2
can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N
4
moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N
4
moiety incorporated in nitrogen-doped graphene for H
2
O
2
production and exhibits a kinetic current density of 2.8 mA cm
−2
(at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g
−1
(at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours.
Producing H
2
O
2
electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H
2
O
2
production.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-019-0571-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0001-6472-7004</orcidid><orcidid>https://orcid.org/0000-0002-1563-8328</orcidid><orcidid>https://orcid.org/0000-0002-7570-8404</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2020-04, Vol.19 (4), p.436-442 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2338085582 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301/299 639/638/77/886 Anthraquinones Biomaterials Chemistry and Materials Science Condensed Matter Physics Electrocatalysts Electrochemistry Electrodes First principles Graphene Hydrogen peroxide Industrial development Industrialization Materials Science Nanotechnology Nitrogen Optical and Electronic Materials Oxygen reduction reactions Performance enhancement |
title | Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-level%20tuning%20of%20Co%E2%80%93N%E2%80%93C%20catalyst%20for%20high-performance%20electrochemical%20H2O2%20production&rft.jtitle=Nature%20materials&rft.au=Jung,%20Euiyeon&rft.date=2020-04-01&rft.volume=19&rft.issue=4&rft.spage=436&rft.epage=442&rft.pages=436-442&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0571-5&rft_dat=%3Cproquest_cross%3E2338085582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382998277&rft_id=info:pmid/&rfr_iscdi=true |