Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production

Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H 2 O 2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2020-04, Vol.19 (4), p.436-442
Hauptverfasser: Jung, Euiyeon, Shin, Heejong, Lee, Byoung-Hoon, Efremov, Vladimir, Lee, Suhyeong, Lee, Hyeon Seok, Kim, Jiheon, Hooch Antink, Wytse, Park, Subin, Lee, Kug-Seung, Cho, Sung-Pyo, Yoo, Jong Suk, Sung, Yung-Eun, Hyeon, Taeghwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue 4
container_start_page 436
container_title Nature materials
container_volume 19
creator Jung, Euiyeon
Shin, Heejong
Lee, Byoung-Hoon
Efremov, Vladimir
Lee, Suhyeong
Lee, Hyeon Seok
Kim, Jiheon
Hooch Antink, Wytse
Park, Subin
Lee, Kug-Seung
Cho, Sung-Pyo
Yoo, Jong Suk
Sung, Yung-Eun
Hyeon, Taeghwan
description Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H 2 O 2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N 4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N 4 moiety incorporated in nitrogen-doped graphene for H 2 O 2 production and exhibits a kinetic current density of 2.8 mA cm −2 (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g −1 (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours. Producing H 2 O 2 electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H 2 O 2 production.
doi_str_mv 10.1038/s41563-019-0571-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338085582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338085582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-3a6275b500d440ba477ca82b4c60d62dc355e0399b3ef820d502c0d2a1f9c0693</originalsourceid><addsrcrecordid>eNp9kU1KBDEQhRtRUEcP4C7gxk20Uvnp9FIG_0B0o-uQSadneujpjEm34M47eENPYoYRBEEXRb3F914VvKI4YXDOgOuLJJhUnAKrKMiSUblTHDBRKiqUgt1vzRjifnGY0hIAmZTqoDCXQ1i1jnb-1XdkGPu2n5PQkGn4fP94yDMlzg62e0sDaUIki3a-oGsfs17Z3nniO--GGNzC5xjbkVt8RLKOoR7d0Ib-qNhrbJf88feeFM_XV0_TW3r_eHM3vbynTmgYKLcKSzmTALUQMLOiLJ3VOBNOQa2wdlxKD7yqZtw3GqGWgA5qtKypHKiKT4qzbW4-_TL6NJhVm5zvOtv7MCaDnGvQUmrM6OkvdBnG2OfvDIpSguCi-p_iGqtKY1lmim0pF0NK0TdmHduVjW-GgdkUY7bFmFyM2RRjZPbg1pMy2899_En-2_QFm8iQQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382998277</pqid></control><display><type>article</type><title>Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Jung, Euiyeon ; Shin, Heejong ; Lee, Byoung-Hoon ; Efremov, Vladimir ; Lee, Suhyeong ; Lee, Hyeon Seok ; Kim, Jiheon ; Hooch Antink, Wytse ; Park, Subin ; Lee, Kug-Seung ; Cho, Sung-Pyo ; Yoo, Jong Suk ; Sung, Yung-Eun ; Hyeon, Taeghwan</creator><creatorcontrib>Jung, Euiyeon ; Shin, Heejong ; Lee, Byoung-Hoon ; Efremov, Vladimir ; Lee, Suhyeong ; Lee, Hyeon Seok ; Kim, Jiheon ; Hooch Antink, Wytse ; Park, Subin ; Lee, Kug-Seung ; Cho, Sung-Pyo ; Yoo, Jong Suk ; Sung, Yung-Eun ; Hyeon, Taeghwan</creatorcontrib><description>Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H 2 O 2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N 4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N 4 moiety incorporated in nitrogen-doped graphene for H 2 O 2 production and exhibits a kinetic current density of 2.8 mA cm −2 (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g −1 (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours. Producing H 2 O 2 electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H 2 O 2 production.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0571-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299 ; 639/638/77/886 ; Anthraquinones ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrocatalysts ; Electrochemistry ; Electrodes ; First principles ; Graphene ; Hydrogen peroxide ; Industrial development ; Industrialization ; Materials Science ; Nanotechnology ; Nitrogen ; Optical and Electronic Materials ; Oxygen reduction reactions ; Performance enhancement</subject><ispartof>Nature materials, 2020-04, Vol.19 (4), p.436-442</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-3a6275b500d440ba477ca82b4c60d62dc355e0399b3ef820d502c0d2a1f9c0693</citedby><cites>FETCH-LOGICAL-c480t-3a6275b500d440ba477ca82b4c60d62dc355e0399b3ef820d502c0d2a1f9c0693</cites><orcidid>0000-0001-5959-6257 ; 0000-0001-6472-7004 ; 0000-0002-1563-8328 ; 0000-0002-7570-8404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jung, Euiyeon</creatorcontrib><creatorcontrib>Shin, Heejong</creatorcontrib><creatorcontrib>Lee, Byoung-Hoon</creatorcontrib><creatorcontrib>Efremov, Vladimir</creatorcontrib><creatorcontrib>Lee, Suhyeong</creatorcontrib><creatorcontrib>Lee, Hyeon Seok</creatorcontrib><creatorcontrib>Kim, Jiheon</creatorcontrib><creatorcontrib>Hooch Antink, Wytse</creatorcontrib><creatorcontrib>Park, Subin</creatorcontrib><creatorcontrib>Lee, Kug-Seung</creatorcontrib><creatorcontrib>Cho, Sung-Pyo</creatorcontrib><creatorcontrib>Yoo, Jong Suk</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><title>Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H 2 O 2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N 4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N 4 moiety incorporated in nitrogen-doped graphene for H 2 O 2 production and exhibits a kinetic current density of 2.8 mA cm −2 (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g −1 (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours. Producing H 2 O 2 electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H 2 O 2 production.</description><subject>639/301/299</subject><subject>639/638/77/886</subject><subject>Anthraquinones</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>First principles</subject><subject>Graphene</subject><subject>Hydrogen peroxide</subject><subject>Industrial development</subject><subject>Industrialization</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen reduction reactions</subject><subject>Performance enhancement</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1KBDEQhRtRUEcP4C7gxk20Uvnp9FIG_0B0o-uQSadneujpjEm34M47eENPYoYRBEEXRb3F914VvKI4YXDOgOuLJJhUnAKrKMiSUblTHDBRKiqUgt1vzRjifnGY0hIAmZTqoDCXQ1i1jnb-1XdkGPu2n5PQkGn4fP94yDMlzg62e0sDaUIki3a-oGsfs17Z3nniO--GGNzC5xjbkVt8RLKOoR7d0Ib-qNhrbJf88feeFM_XV0_TW3r_eHM3vbynTmgYKLcKSzmTALUQMLOiLJ3VOBNOQa2wdlxKD7yqZtw3GqGWgA5qtKypHKiKT4qzbW4-_TL6NJhVm5zvOtv7MCaDnGvQUmrM6OkvdBnG2OfvDIpSguCi-p_iGqtKY1lmim0pF0NK0TdmHduVjW-GgdkUY7bFmFyM2RRjZPbg1pMy2899_En-2_QFm8iQQA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Jung, Euiyeon</creator><creator>Shin, Heejong</creator><creator>Lee, Byoung-Hoon</creator><creator>Efremov, Vladimir</creator><creator>Lee, Suhyeong</creator><creator>Lee, Hyeon Seok</creator><creator>Kim, Jiheon</creator><creator>Hooch Antink, Wytse</creator><creator>Park, Subin</creator><creator>Lee, Kug-Seung</creator><creator>Cho, Sung-Pyo</creator><creator>Yoo, Jong Suk</creator><creator>Sung, Yung-Eun</creator><creator>Hyeon, Taeghwan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0001-6472-7004</orcidid><orcidid>https://orcid.org/0000-0002-1563-8328</orcidid><orcidid>https://orcid.org/0000-0002-7570-8404</orcidid></search><sort><creationdate>20200401</creationdate><title>Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production</title><author>Jung, Euiyeon ; Shin, Heejong ; Lee, Byoung-Hoon ; Efremov, Vladimir ; Lee, Suhyeong ; Lee, Hyeon Seok ; Kim, Jiheon ; Hooch Antink, Wytse ; Park, Subin ; Lee, Kug-Seung ; Cho, Sung-Pyo ; Yoo, Jong Suk ; Sung, Yung-Eun ; Hyeon, Taeghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-3a6275b500d440ba477ca82b4c60d62dc355e0399b3ef820d502c0d2a1f9c0693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299</topic><topic>639/638/77/886</topic><topic>Anthraquinones</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>First principles</topic><topic>Graphene</topic><topic>Hydrogen peroxide</topic><topic>Industrial development</topic><topic>Industrialization</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen reduction reactions</topic><topic>Performance enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Euiyeon</creatorcontrib><creatorcontrib>Shin, Heejong</creatorcontrib><creatorcontrib>Lee, Byoung-Hoon</creatorcontrib><creatorcontrib>Efremov, Vladimir</creatorcontrib><creatorcontrib>Lee, Suhyeong</creatorcontrib><creatorcontrib>Lee, Hyeon Seok</creatorcontrib><creatorcontrib>Kim, Jiheon</creatorcontrib><creatorcontrib>Hooch Antink, Wytse</creatorcontrib><creatorcontrib>Park, Subin</creatorcontrib><creatorcontrib>Lee, Kug-Seung</creatorcontrib><creatorcontrib>Cho, Sung-Pyo</creatorcontrib><creatorcontrib>Yoo, Jong Suk</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Euiyeon</au><au>Shin, Heejong</au><au>Lee, Byoung-Hoon</au><au>Efremov, Vladimir</au><au>Lee, Suhyeong</au><au>Lee, Hyeon Seok</au><au>Kim, Jiheon</au><au>Hooch Antink, Wytse</au><au>Park, Subin</au><au>Lee, Kug-Seung</au><au>Cho, Sung-Pyo</au><au>Yoo, Jong Suk</au><au>Sung, Yung-Eun</au><au>Hyeon, Taeghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>19</volume><issue>4</issue><spage>436</spage><epage>442</epage><pages>436-442</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H 2 O 2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co–N 4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co–N 4 moiety incorporated in nitrogen-doped graphene for H 2 O 2 production and exhibits a kinetic current density of 2.8 mA cm −2 (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g −1 (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours. Producing H 2 O 2 electrochemically currently use electrocatalysts that are insufficient to meet the demands for industrialization. A single-atom electrocatalyst with an optimized Co–N4 moiety incorporated in nitrogen-doped graphene is shown to exhibit enhanced performance for H 2 O 2 production.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-019-0571-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5959-6257</orcidid><orcidid>https://orcid.org/0000-0001-6472-7004</orcidid><orcidid>https://orcid.org/0000-0002-1563-8328</orcidid><orcidid>https://orcid.org/0000-0002-7570-8404</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2020-04, Vol.19 (4), p.436-442
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2338085582
source Nature; Alma/SFX Local Collection
subjects 639/301/299
639/638/77/886
Anthraquinones
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Electrocatalysts
Electrochemistry
Electrodes
First principles
Graphene
Hydrogen peroxide
Industrial development
Industrialization
Materials Science
Nanotechnology
Nitrogen
Optical and Electronic Materials
Oxygen reduction reactions
Performance enhancement
title Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-level%20tuning%20of%20Co%E2%80%93N%E2%80%93C%20catalyst%20for%20high-performance%20electrochemical%20H2O2%20production&rft.jtitle=Nature%20materials&rft.au=Jung,%20Euiyeon&rft.date=2020-04-01&rft.volume=19&rft.issue=4&rft.spage=436&rft.epage=442&rft.pages=436-442&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0571-5&rft_dat=%3Cproquest_cross%3E2338085582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2382998277&rft_id=info:pmid/&rfr_iscdi=true