Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling

Despite the success of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations, intrinsic or acquired resistance remains the major obstacle to long-term disease remission. Defective autophagy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2020-04, Vol.474, p.23-35
Hauptverfasser: Yu, Jiao-jiao, Zhou, Dan-dan, Cui, Bing, Zhang, Cheng, Tan, Feng-wei, Chang, Shan, Li, Ke, Lv, Xiao-xi, Zhang, Xiao-wei, Shang, Shuang, Xiang, Yu-Jin, Chen, Fei, Yu, Jin-mei, Liu, Shan-shan, Wang, Feng, Hu, Zhuo-Wei, Hua, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 23
container_title Cancer letters
container_volume 474
creator Yu, Jiao-jiao
Zhou, Dan-dan
Cui, Bing
Zhang, Cheng
Tan, Feng-wei
Chang, Shan
Li, Ke
Lv, Xiao-xi
Zhang, Xiao-wei
Shang, Shuang
Xiang, Yu-Jin
Chen, Fei
Yu, Jin-mei
Liu, Shan-shan
Wang, Feng
Hu, Zhuo-Wei
Hua, Fang
description Despite the success of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations, intrinsic or acquired resistance remains the major obstacle to long-term disease remission. Defective autophagy has been reported as an EGFR-TKI resistance mechanism. However, how EGFR regulate autophagic flux are still not fully understood. Here we found that EGFR-stimulated phosphorylation of SQSTM1 at tyrosine 433 induces dimerization of its UBA domain, which disturbs the sequestration function of SQSTM1 and causes autophagic flux blocking. SAH-EJ2, a staple optimized EGFR-derived peptide, showed enhanced in vitro and in vivo antitumor activity against NSCLC than the prototype regardless of EGFR mutation status. Mechanistically, SAH-EJ2 disrupts the EGFR-SQSTM1 interaction and protects against EGFR-induced SQSTM1 phosphorylation, which hinders the dimerization of the SQSTM1 UBA domains and restores SQSTM1 cargo function. Moreover, SAH-EJ2 suppresses EGFR activity by blocking its dimerization and reducing its protein stability, which reciprocally activates the core autophagy machinery. Our observations reveal that disturbing the EGFR-SQSTM1 interaction by SAH-EJ2 confers a potential strategy in the treatment of NSCLC through suppressing EGFR signalling and activating autophagy simultaneously. •EGFR-SQSTM1 interaction triggers SQSTM1 phosphorylation at Y433, destroying the sequestration function of SQSTM1 in NSCLC.•Disturbing EGFR-SQSTM1 with a chimeric peptide PJMA1 rescues the cargo function of SQSTM1.•Staple-modified SAH-EJ2 shows improved physicochemical properties and antitumor activity against NSCLC than its prototype.•Blocking EGFR-SQSTM1 binding confers a potential therapeutic strategy against NSCLC via dual targeting EGFR and autophagy.
doi_str_mv 10.1016/j.canlet.2020.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338078237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383520300124</els_id><sourcerecordid>2352395914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-79eb3a02865afcec20f3c5a0dd012b6594ac6e7ec23113c52f3c1f38147b7e353</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EokvhDRCyxIVLwtiON8kFCfW_VISg5Ww5zmTXq2wSbGelvgMPzaRbOHDgZNnf75sZz8fYWwG5ALH-uMudHXpMuQQJOYgcoHjGVqIqZVbWFTxnK1BQZKpS-oS9inEHALoo9Ut2okStBMh6xX6d-xjmKflx4GPH0xb5xdXl9-zu2939F8H9kDBY9yg3D9zymOzUY8snJE-LPM7TFDBGjLyfhw2nmRwGfvCWL7aDTZ5e7ZzGaWs3VGFoqejWN_5RWHrx6DeD7en6mr3obB_xzdN5yn5cXtyfXWe3X69uzj7fZk7VkOh32CgLslpr2zl0EjrltIW2BSGbta4L69ZYkqCEIEWSLDpViaJsSlRanbIPx7pTGH_OGJPZ--iw7-2A4xyNVKqCspKqJPT9P-hunAONu1BaqlrXoiCqOFIujDEG7MwU_N6GByPALGmZnTmmZZa0DAhDaZHt3VPxudlj-9f0Jx4CPh0BpG0cPAYTnUfacOsDumTa0f-_w29t26hL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352395914</pqid></control><display><type>article</type><title>Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yu, Jiao-jiao ; Zhou, Dan-dan ; Cui, Bing ; Zhang, Cheng ; Tan, Feng-wei ; Chang, Shan ; Li, Ke ; Lv, Xiao-xi ; Zhang, Xiao-wei ; Shang, Shuang ; Xiang, Yu-Jin ; Chen, Fei ; Yu, Jin-mei ; Liu, Shan-shan ; Wang, Feng ; Hu, Zhuo-Wei ; Hua, Fang</creator><creatorcontrib>Yu, Jiao-jiao ; Zhou, Dan-dan ; Cui, Bing ; Zhang, Cheng ; Tan, Feng-wei ; Chang, Shan ; Li, Ke ; Lv, Xiao-xi ; Zhang, Xiao-wei ; Shang, Shuang ; Xiang, Yu-Jin ; Chen, Fei ; Yu, Jin-mei ; Liu, Shan-shan ; Wang, Feng ; Hu, Zhuo-Wei ; Hua, Fang</creatorcontrib><description>Despite the success of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations, intrinsic or acquired resistance remains the major obstacle to long-term disease remission. Defective autophagy has been reported as an EGFR-TKI resistance mechanism. However, how EGFR regulate autophagic flux are still not fully understood. Here we found that EGFR-stimulated phosphorylation of SQSTM1 at tyrosine 433 induces dimerization of its UBA domain, which disturbs the sequestration function of SQSTM1 and causes autophagic flux blocking. SAH-EJ2, a staple optimized EGFR-derived peptide, showed enhanced in vitro and in vivo antitumor activity against NSCLC than the prototype regardless of EGFR mutation status. Mechanistically, SAH-EJ2 disrupts the EGFR-SQSTM1 interaction and protects against EGFR-induced SQSTM1 phosphorylation, which hinders the dimerization of the SQSTM1 UBA domains and restores SQSTM1 cargo function. Moreover, SAH-EJ2 suppresses EGFR activity by blocking its dimerization and reducing its protein stability, which reciprocally activates the core autophagy machinery. Our observations reveal that disturbing the EGFR-SQSTM1 interaction by SAH-EJ2 confers a potential strategy in the treatment of NSCLC through suppressing EGFR signalling and activating autophagy simultaneously. •EGFR-SQSTM1 interaction triggers SQSTM1 phosphorylation at Y433, destroying the sequestration function of SQSTM1 in NSCLC.•Disturbing EGFR-SQSTM1 with a chimeric peptide PJMA1 rescues the cargo function of SQSTM1.•Staple-modified SAH-EJ2 shows improved physicochemical properties and antitumor activity against NSCLC than its prototype.•Blocking EGFR-SQSTM1 binding confers a potential therapeutic strategy against NSCLC via dual targeting EGFR and autophagy.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2020.01.004</identifier><identifier>PMID: 31931029</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Antitumor activity ; Apoptosis ; Autophagic cargo ; Autophagy ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - genetics ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Cell Proliferation ; Dimerization ; Drug Resistance, Neoplasm ; Epidermal growth factor ; Epidermal growth factor receptors ; ErbB Receptors - antagonists &amp; inhibitors ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Gene Expression Regulation, Neoplastic ; Growth factors ; Growth models ; Humans ; Juxtamembrane region ; Kinases ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Mutation ; Non-small cell lung carcinoma ; Peptide Fragments - pharmacology ; Peptides ; Phagocytosis ; Phosphorylation ; Protein degradation ; Protein Kinase Inhibitors - pharmacology ; Protein Multimerization ; Protein-tyrosine kinase ; Proteins ; Remission ; Remission (Medicine) ; Sequestosome-1 Protein - antagonists &amp; inhibitors ; Sequestosome-1 Protein - metabolism ; Signal Transduction ; Small cell lung carcinoma ; Spectrum analysis ; SQSTM1 dimerization ; Transgenic animals ; Tumor Cells, Cultured ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer letters, 2020-04, Vol.474, p.23-35</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>2020. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-79eb3a02865afcec20f3c5a0dd012b6594ac6e7ec23113c52f3c1f38147b7e353</citedby><cites>FETCH-LOGICAL-c390t-79eb3a02865afcec20f3c5a0dd012b6594ac6e7ec23113c52f3c1f38147b7e353</cites><orcidid>0000-0002-9903-6980 ; 0000-0001-7169-9398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.canlet.2020.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31931029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jiao-jiao</creatorcontrib><creatorcontrib>Zhou, Dan-dan</creatorcontrib><creatorcontrib>Cui, Bing</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Tan, Feng-wei</creatorcontrib><creatorcontrib>Chang, Shan</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Lv, Xiao-xi</creatorcontrib><creatorcontrib>Zhang, Xiao-wei</creatorcontrib><creatorcontrib>Shang, Shuang</creatorcontrib><creatorcontrib>Xiang, Yu-Jin</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Yu, Jin-mei</creatorcontrib><creatorcontrib>Liu, Shan-shan</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Hu, Zhuo-Wei</creatorcontrib><creatorcontrib>Hua, Fang</creatorcontrib><title>Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>Despite the success of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations, intrinsic or acquired resistance remains the major obstacle to long-term disease remission. Defective autophagy has been reported as an EGFR-TKI resistance mechanism. However, how EGFR regulate autophagic flux are still not fully understood. Here we found that EGFR-stimulated phosphorylation of SQSTM1 at tyrosine 433 induces dimerization of its UBA domain, which disturbs the sequestration function of SQSTM1 and causes autophagic flux blocking. SAH-EJ2, a staple optimized EGFR-derived peptide, showed enhanced in vitro and in vivo antitumor activity against NSCLC than the prototype regardless of EGFR mutation status. Mechanistically, SAH-EJ2 disrupts the EGFR-SQSTM1 interaction and protects against EGFR-induced SQSTM1 phosphorylation, which hinders the dimerization of the SQSTM1 UBA domains and restores SQSTM1 cargo function. Moreover, SAH-EJ2 suppresses EGFR activity by blocking its dimerization and reducing its protein stability, which reciprocally activates the core autophagy machinery. Our observations reveal that disturbing the EGFR-SQSTM1 interaction by SAH-EJ2 confers a potential strategy in the treatment of NSCLC through suppressing EGFR signalling and activating autophagy simultaneously. •EGFR-SQSTM1 interaction triggers SQSTM1 phosphorylation at Y433, destroying the sequestration function of SQSTM1 in NSCLC.•Disturbing EGFR-SQSTM1 with a chimeric peptide PJMA1 rescues the cargo function of SQSTM1.•Staple-modified SAH-EJ2 shows improved physicochemical properties and antitumor activity against NSCLC than its prototype.•Blocking EGFR-SQSTM1 binding confers a potential therapeutic strategy against NSCLC via dual targeting EGFR and autophagy.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Autophagic cargo</subject><subject>Autophagy</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Cell Proliferation</subject><subject>Dimerization</subject><subject>Drug Resistance, Neoplasm</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Growth factors</subject><subject>Growth models</subject><subject>Humans</subject><subject>Juxtamembrane region</subject><subject>Kinases</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Mutation</subject><subject>Non-small cell lung carcinoma</subject><subject>Peptide Fragments - pharmacology</subject><subject>Peptides</subject><subject>Phagocytosis</subject><subject>Phosphorylation</subject><subject>Protein degradation</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Multimerization</subject><subject>Protein-tyrosine kinase</subject><subject>Proteins</subject><subject>Remission</subject><subject>Remission (Medicine)</subject><subject>Sequestosome-1 Protein - antagonists &amp; inhibitors</subject><subject>Sequestosome-1 Protein - metabolism</subject><subject>Signal Transduction</subject><subject>Small cell lung carcinoma</subject><subject>Spectrum analysis</subject><subject>SQSTM1 dimerization</subject><subject>Transgenic animals</subject><subject>Tumor Cells, Cultured</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxi0EokvhDRCyxIVLwtiON8kFCfW_VISg5Ww5zmTXq2wSbGelvgMPzaRbOHDgZNnf75sZz8fYWwG5ALH-uMudHXpMuQQJOYgcoHjGVqIqZVbWFTxnK1BQZKpS-oS9inEHALoo9Ut2okStBMh6xX6d-xjmKflx4GPH0xb5xdXl9-zu2939F8H9kDBY9yg3D9zymOzUY8snJE-LPM7TFDBGjLyfhw2nmRwGfvCWL7aDTZ5e7ZzGaWs3VGFoqejWN_5RWHrx6DeD7en6mr3obB_xzdN5yn5cXtyfXWe3X69uzj7fZk7VkOh32CgLslpr2zl0EjrltIW2BSGbta4L69ZYkqCEIEWSLDpViaJsSlRanbIPx7pTGH_OGJPZ--iw7-2A4xyNVKqCspKqJPT9P-hunAONu1BaqlrXoiCqOFIujDEG7MwU_N6GByPALGmZnTmmZZa0DAhDaZHt3VPxudlj-9f0Jx4CPh0BpG0cPAYTnUfacOsDumTa0f-_w29t26hL</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yu, Jiao-jiao</creator><creator>Zhou, Dan-dan</creator><creator>Cui, Bing</creator><creator>Zhang, Cheng</creator><creator>Tan, Feng-wei</creator><creator>Chang, Shan</creator><creator>Li, Ke</creator><creator>Lv, Xiao-xi</creator><creator>Zhang, Xiao-wei</creator><creator>Shang, Shuang</creator><creator>Xiang, Yu-Jin</creator><creator>Chen, Fei</creator><creator>Yu, Jin-mei</creator><creator>Liu, Shan-shan</creator><creator>Wang, Feng</creator><creator>Hu, Zhuo-Wei</creator><creator>Hua, Fang</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9903-6980</orcidid><orcidid>https://orcid.org/0000-0001-7169-9398</orcidid></search><sort><creationdate>20200401</creationdate><title>Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling</title><author>Yu, Jiao-jiao ; Zhou, Dan-dan ; Cui, Bing ; Zhang, Cheng ; Tan, Feng-wei ; Chang, Shan ; Li, Ke ; Lv, Xiao-xi ; Zhang, Xiao-wei ; Shang, Shuang ; Xiang, Yu-Jin ; Chen, Fei ; Yu, Jin-mei ; Liu, Shan-shan ; Wang, Feng ; Hu, Zhuo-Wei ; Hua, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-79eb3a02865afcec20f3c5a0dd012b6594ac6e7ec23113c52f3c1f38147b7e353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Autophagic cargo</topic><topic>Autophagy</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Cell Proliferation</topic><topic>Dimerization</topic><topic>Drug Resistance, Neoplasm</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Growth factors</topic><topic>Growth models</topic><topic>Humans</topic><topic>Juxtamembrane region</topic><topic>Kinases</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Mutation</topic><topic>Non-small cell lung carcinoma</topic><topic>Peptide Fragments - pharmacology</topic><topic>Peptides</topic><topic>Phagocytosis</topic><topic>Phosphorylation</topic><topic>Protein degradation</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Multimerization</topic><topic>Protein-tyrosine kinase</topic><topic>Proteins</topic><topic>Remission</topic><topic>Remission (Medicine)</topic><topic>Sequestosome-1 Protein - antagonists &amp; inhibitors</topic><topic>Sequestosome-1 Protein - metabolism</topic><topic>Signal Transduction</topic><topic>Small cell lung carcinoma</topic><topic>Spectrum analysis</topic><topic>SQSTM1 dimerization</topic><topic>Transgenic animals</topic><topic>Tumor Cells, Cultured</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jiao-jiao</creatorcontrib><creatorcontrib>Zhou, Dan-dan</creatorcontrib><creatorcontrib>Cui, Bing</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Tan, Feng-wei</creatorcontrib><creatorcontrib>Chang, Shan</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Lv, Xiao-xi</creatorcontrib><creatorcontrib>Zhang, Xiao-wei</creatorcontrib><creatorcontrib>Shang, Shuang</creatorcontrib><creatorcontrib>Xiang, Yu-Jin</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Yu, Jin-mei</creatorcontrib><creatorcontrib>Liu, Shan-shan</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Hu, Zhuo-Wei</creatorcontrib><creatorcontrib>Hua, Fang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jiao-jiao</au><au>Zhou, Dan-dan</au><au>Cui, Bing</au><au>Zhang, Cheng</au><au>Tan, Feng-wei</au><au>Chang, Shan</au><au>Li, Ke</au><au>Lv, Xiao-xi</au><au>Zhang, Xiao-wei</au><au>Shang, Shuang</au><au>Xiang, Yu-Jin</au><au>Chen, Fei</au><au>Yu, Jin-mei</au><au>Liu, Shan-shan</au><au>Wang, Feng</au><au>Hu, Zhuo-Wei</au><au>Hua, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>474</volume><spage>23</spage><epage>35</epage><pages>23-35</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>Despite the success of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations, intrinsic or acquired resistance remains the major obstacle to long-term disease remission. Defective autophagy has been reported as an EGFR-TKI resistance mechanism. However, how EGFR regulate autophagic flux are still not fully understood. Here we found that EGFR-stimulated phosphorylation of SQSTM1 at tyrosine 433 induces dimerization of its UBA domain, which disturbs the sequestration function of SQSTM1 and causes autophagic flux blocking. SAH-EJ2, a staple optimized EGFR-derived peptide, showed enhanced in vitro and in vivo antitumor activity against NSCLC than the prototype regardless of EGFR mutation status. Mechanistically, SAH-EJ2 disrupts the EGFR-SQSTM1 interaction and protects against EGFR-induced SQSTM1 phosphorylation, which hinders the dimerization of the SQSTM1 UBA domains and restores SQSTM1 cargo function. Moreover, SAH-EJ2 suppresses EGFR activity by blocking its dimerization and reducing its protein stability, which reciprocally activates the core autophagy machinery. Our observations reveal that disturbing the EGFR-SQSTM1 interaction by SAH-EJ2 confers a potential strategy in the treatment of NSCLC through suppressing EGFR signalling and activating autophagy simultaneously. •EGFR-SQSTM1 interaction triggers SQSTM1 phosphorylation at Y433, destroying the sequestration function of SQSTM1 in NSCLC.•Disturbing EGFR-SQSTM1 with a chimeric peptide PJMA1 rescues the cargo function of SQSTM1.•Staple-modified SAH-EJ2 shows improved physicochemical properties and antitumor activity against NSCLC than its prototype.•Blocking EGFR-SQSTM1 binding confers a potential therapeutic strategy against NSCLC via dual targeting EGFR and autophagy.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>31931029</pmid><doi>10.1016/j.canlet.2020.01.004</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9903-6980</orcidid><orcidid>https://orcid.org/0000-0001-7169-9398</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3835
ispartof Cancer letters, 2020-04, Vol.474, p.23-35
issn 0304-3835
1872-7980
language eng
recordid cdi_proquest_miscellaneous_2338078237
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Antineoplastic Agents - pharmacology
Antitumor activity
Apoptosis
Autophagic cargo
Autophagy
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Cell Proliferation
Dimerization
Drug Resistance, Neoplasm
Epidermal growth factor
Epidermal growth factor receptors
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - genetics
ErbB Receptors - metabolism
Gene Expression Regulation, Neoplastic
Growth factors
Growth models
Humans
Juxtamembrane region
Kinases
Lung cancer
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Male
Mice
Mice, Inbred BALB C
Mice, Nude
Mutation
Non-small cell lung carcinoma
Peptide Fragments - pharmacology
Peptides
Phagocytosis
Phosphorylation
Protein degradation
Protein Kinase Inhibitors - pharmacology
Protein Multimerization
Protein-tyrosine kinase
Proteins
Remission
Remission (Medicine)
Sequestosome-1 Protein - antagonists & inhibitors
Sequestosome-1 Protein - metabolism
Signal Transduction
Small cell lung carcinoma
Spectrum analysis
SQSTM1 dimerization
Transgenic animals
Tumor Cells, Cultured
Xenograft Model Antitumor Assays
title Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20the%20EGFR-SQSTM1%20interaction%20by%20a%20stapled%20peptide%20suppresses%20lung%20cancer%20via%20activating%20autophagy%20and%20inhibiting%20EGFR%20signaling&rft.jtitle=Cancer%20letters&rft.au=Yu,%20Jiao-jiao&rft.date=2020-04-01&rft.volume=474&rft.spage=23&rft.epage=35&rft.pages=23-35&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2020.01.004&rft_dat=%3Cproquest_cross%3E2352395914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352395914&rft_id=info:pmid/31931029&rft_els_id=S0304383520300124&rfr_iscdi=true