Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children

Background The chest radiograph is the most common imaging modality to assess childhood pneumonia. It has been used in epidemiological and vaccine efficacy/effectiveness studies on childhood pneumonia. Objective To develop computer-aided diagnosis (CAD4Kids) for chest radiography in children and to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric radiology 2020-04, Vol.50 (4), p.482-491
Hauptverfasser: Mahomed, Nasreen, van Ginneken, Bram, Philipsen, Rick H. H. M., Melendez, Jaime, Moore, David P., Moodley, Halvani, Sewchuran, Tanusha, Mathew, Denny, Madhi, Shabir A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 4
container_start_page 482
container_title Pediatric radiology
container_volume 50
creator Mahomed, Nasreen
van Ginneken, Bram
Philipsen, Rick H. H. M.
Melendez, Jaime
Moore, David P.
Moodley, Halvani
Sewchuran, Tanusha
Mathew, Denny
Madhi, Shabir A.
description Background The chest radiograph is the most common imaging modality to assess childhood pneumonia. It has been used in epidemiological and vaccine efficacy/effectiveness studies on childhood pneumonia. Objective To develop computer-aided diagnosis (CAD4Kids) for chest radiography in children and to evaluate its accuracy in identifying World Health Organization (WHO)-defined chest radiograph primary-endpoint pneumonia compared to a consensus interpretation. Materials and methods Chest radiographs were independently evaluated by three radiologists based on WHO criteria. Automatic lung field segmentation was followed by manual inspection and correction, training, feature extraction and classification. Radiographs were filtered with Gaussian derivatives on multiple scales, extracting texture features to classify each pixel in the lung region. To obtain an image score, the 95 th percentile score of the pixels was used. Training and testing were done in 10-fold cross validation. Results The radiologist majority consensus reading of 858 interpretable chest radiographs included 333 (39%) categorised as primary-endpoint pneumonia, 208 (24%) as other infiltrate only and 317 (37%) as no primary-endpoint pneumonia or other infiltrate. Compared to the reference radiologist consensus reading, CAD4Kids had an area under the receiver operator characteristic (ROC) curve of 0.850 (95% confidence interval [CI] 0.823–0.876), with a sensitivity of 76% and specificity of 80% for identifying primary-endpoint pneumonia on chest radiograph. Furthermore, the ROC curve was 0.810 (95% CI 0.772–0.846) for CAD4Kids identifying primary-endpoint pneumonia compared to other infiltrate only. Conclusion Further development of the CAD4Kids software and validation in multicentre studies are important for future research on computer-aided diagnosis and artificial intelligence in paediatric radiology.
doi_str_mv 10.1007/s00247-019-04593-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338065506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376507903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-eb6fc90d4101006b027f36cd96c4c1f8c51274fa663787a3ee0519e8787c800f3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7uzqH_AgDV72Eq100unOUYb9goW9KB5DJqnMZOlO2qRb0F9v3BkVPHgKRT31poqHkDcM3jOA_kMBaEVPgSkKolOcwjOyYYK3lCk1PCcb4MBqS6gzcl7KIwDwjvGX5IwzxUG0akO-bdM0rwtmaoJD17hg9jGVUBqfcvMl5dE1t2jG5dA85L2J4YdZQorUoQ-x8vaAZWmycSHts5kPzZzDZPJ3itHNKcSlmSOuU4rBNCFWPIwuY3xFXngzFnx9ei_I5-urT9tbev9wc7f9eE-tYGqhuJPeKnCCQb1Y7qDtPZfWKWmFZX6wHWt74Y2UvB96wxGhYwqHWtgBwPMLcnnMnXP6utZV9RSKxXE0EdNadMv5ALLrQFb03T_oY1pzrNtVqpcd9Ap4pdojZXMqJaPXp4M1A_3Lij5a0dWKfrKioQ69PUWvuwndn5HfGirAj0CprbjH_Pfv_8T-BDwEmJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376507903</pqid></control><display><type>article</type><title>Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mahomed, Nasreen ; van Ginneken, Bram ; Philipsen, Rick H. H. M. ; Melendez, Jaime ; Moore, David P. ; Moodley, Halvani ; Sewchuran, Tanusha ; Mathew, Denny ; Madhi, Shabir A.</creator><creatorcontrib>Mahomed, Nasreen ; van Ginneken, Bram ; Philipsen, Rick H. H. M. ; Melendez, Jaime ; Moore, David P. ; Moodley, Halvani ; Sewchuran, Tanusha ; Mathew, Denny ; Madhi, Shabir A.</creatorcontrib><description>Background The chest radiograph is the most common imaging modality to assess childhood pneumonia. It has been used in epidemiological and vaccine efficacy/effectiveness studies on childhood pneumonia. Objective To develop computer-aided diagnosis (CAD4Kids) for chest radiography in children and to evaluate its accuracy in identifying World Health Organization (WHO)-defined chest radiograph primary-endpoint pneumonia compared to a consensus interpretation. Materials and methods Chest radiographs were independently evaluated by three radiologists based on WHO criteria. Automatic lung field segmentation was followed by manual inspection and correction, training, feature extraction and classification. Radiographs were filtered with Gaussian derivatives on multiple scales, extracting texture features to classify each pixel in the lung region. To obtain an image score, the 95 th percentile score of the pixels was used. Training and testing were done in 10-fold cross validation. Results The radiologist majority consensus reading of 858 interpretable chest radiographs included 333 (39%) categorised as primary-endpoint pneumonia, 208 (24%) as other infiltrate only and 317 (37%) as no primary-endpoint pneumonia or other infiltrate. Compared to the reference radiologist consensus reading, CAD4Kids had an area under the receiver operator characteristic (ROC) curve of 0.850 (95% confidence interval [CI] 0.823–0.876), with a sensitivity of 76% and specificity of 80% for identifying primary-endpoint pneumonia on chest radiograph. Furthermore, the ROC curve was 0.810 (95% CI 0.772–0.846) for CAD4Kids identifying primary-endpoint pneumonia compared to other infiltrate only. Conclusion Further development of the CAD4Kids software and validation in multicentre studies are important for future research on computer-aided diagnosis and artificial intelligence in paediatric radiology.</description><identifier>ISSN: 0301-0449</identifier><identifier>EISSN: 1432-1998</identifier><identifier>DOI: 10.1007/s00247-019-04593-0</identifier><identifier>PMID: 31930429</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adolescent ; Artificial intelligence ; Chest ; Child ; Child, Preschool ; Children ; Confidence intervals ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; Epidemiology ; Evaluation ; Feature extraction ; Female ; Humans ; Image classification ; Image segmentation ; Imaging ; Infant ; Infant, Newborn ; Inspection ; Lungs ; Male ; Medical diagnosis ; Medicine ; Medicine &amp; Public Health ; Neuroradiology ; Nuclear Medicine ; Oncology ; Original Article ; Pediatrics ; Pixels ; Pneumonia ; Pneumonia - diagnostic imaging ; Radiographs ; Radiography ; Radiography, Thoracic - methods ; Radiology ; Training ; Ultrasound ; Vaccine efficacy ; World Health Organization</subject><ispartof>Pediatric radiology, 2020-04, Vol.50 (4), p.482-491</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Pediatric Radiology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-eb6fc90d4101006b027f36cd96c4c1f8c51274fa663787a3ee0519e8787c800f3</citedby><cites>FETCH-LOGICAL-c419t-eb6fc90d4101006b027f36cd96c4c1f8c51274fa663787a3ee0519e8787c800f3</cites><orcidid>0000-0003-4442-9872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00247-019-04593-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00247-019-04593-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31930429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahomed, Nasreen</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Philipsen, Rick H. H. M.</creatorcontrib><creatorcontrib>Melendez, Jaime</creatorcontrib><creatorcontrib>Moore, David P.</creatorcontrib><creatorcontrib>Moodley, Halvani</creatorcontrib><creatorcontrib>Sewchuran, Tanusha</creatorcontrib><creatorcontrib>Mathew, Denny</creatorcontrib><creatorcontrib>Madhi, Shabir A.</creatorcontrib><title>Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children</title><title>Pediatric radiology</title><addtitle>Pediatr Radiol</addtitle><addtitle>Pediatr Radiol</addtitle><description>Background The chest radiograph is the most common imaging modality to assess childhood pneumonia. It has been used in epidemiological and vaccine efficacy/effectiveness studies on childhood pneumonia. Objective To develop computer-aided diagnosis (CAD4Kids) for chest radiography in children and to evaluate its accuracy in identifying World Health Organization (WHO)-defined chest radiograph primary-endpoint pneumonia compared to a consensus interpretation. Materials and methods Chest radiographs were independently evaluated by three radiologists based on WHO criteria. Automatic lung field segmentation was followed by manual inspection and correction, training, feature extraction and classification. Radiographs were filtered with Gaussian derivatives on multiple scales, extracting texture features to classify each pixel in the lung region. To obtain an image score, the 95 th percentile score of the pixels was used. Training and testing were done in 10-fold cross validation. Results The radiologist majority consensus reading of 858 interpretable chest radiographs included 333 (39%) categorised as primary-endpoint pneumonia, 208 (24%) as other infiltrate only and 317 (37%) as no primary-endpoint pneumonia or other infiltrate. Compared to the reference radiologist consensus reading, CAD4Kids had an area under the receiver operator characteristic (ROC) curve of 0.850 (95% confidence interval [CI] 0.823–0.876), with a sensitivity of 76% and specificity of 80% for identifying primary-endpoint pneumonia on chest radiograph. Furthermore, the ROC curve was 0.810 (95% CI 0.772–0.846) for CAD4Kids identifying primary-endpoint pneumonia compared to other infiltrate only. Conclusion Further development of the CAD4Kids software and validation in multicentre studies are important for future research on computer-aided diagnosis and artificial intelligence in paediatric radiology.</description><subject>Adolescent</subject><subject>Artificial intelligence</subject><subject>Chest</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>Confidence intervals</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Epidemiology</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Inspection</subject><subject>Lungs</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neuroradiology</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Pediatrics</subject><subject>Pixels</subject><subject>Pneumonia</subject><subject>Pneumonia - diagnostic imaging</subject><subject>Radiographs</subject><subject>Radiography</subject><subject>Radiography, Thoracic - methods</subject><subject>Radiology</subject><subject>Training</subject><subject>Ultrasound</subject><subject>Vaccine efficacy</subject><subject>World Health Organization</subject><issn>0301-0449</issn><issn>1432-1998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU2LFDEQhoMo7uzqH_AgDV72Eq100unOUYb9goW9KB5DJqnMZOlO2qRb0F9v3BkVPHgKRT31poqHkDcM3jOA_kMBaEVPgSkKolOcwjOyYYK3lCk1PCcb4MBqS6gzcl7KIwDwjvGX5IwzxUG0akO-bdM0rwtmaoJD17hg9jGVUBqfcvMl5dE1t2jG5dA85L2J4YdZQorUoQ-x8vaAZWmycSHts5kPzZzDZPJ3itHNKcSlmSOuU4rBNCFWPIwuY3xFXngzFnx9ei_I5-urT9tbev9wc7f9eE-tYGqhuJPeKnCCQb1Y7qDtPZfWKWmFZX6wHWt74Y2UvB96wxGhYwqHWtgBwPMLcnnMnXP6utZV9RSKxXE0EdNadMv5ALLrQFb03T_oY1pzrNtVqpcd9Ap4pdojZXMqJaPXp4M1A_3Lij5a0dWKfrKioQ69PUWvuwndn5HfGirAj0CprbjH_Pfv_8T-BDwEmJQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mahomed, Nasreen</creator><creator>van Ginneken, Bram</creator><creator>Philipsen, Rick H. H. M.</creator><creator>Melendez, Jaime</creator><creator>Moore, David P.</creator><creator>Moodley, Halvani</creator><creator>Sewchuran, Tanusha</creator><creator>Mathew, Denny</creator><creator>Madhi, Shabir A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4442-9872</orcidid></search><sort><creationdate>20200401</creationdate><title>Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children</title><author>Mahomed, Nasreen ; van Ginneken, Bram ; Philipsen, Rick H. H. M. ; Melendez, Jaime ; Moore, David P. ; Moodley, Halvani ; Sewchuran, Tanusha ; Mathew, Denny ; Madhi, Shabir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-eb6fc90d4101006b027f36cd96c4c1f8c51274fa663787a3ee0519e8787c800f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adolescent</topic><topic>Artificial intelligence</topic><topic>Chest</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>Confidence intervals</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Epidemiology</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Inspection</topic><topic>Lungs</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neuroradiology</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Pediatrics</topic><topic>Pixels</topic><topic>Pneumonia</topic><topic>Pneumonia - diagnostic imaging</topic><topic>Radiographs</topic><topic>Radiography</topic><topic>Radiography, Thoracic - methods</topic><topic>Radiology</topic><topic>Training</topic><topic>Ultrasound</topic><topic>Vaccine efficacy</topic><topic>World Health Organization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahomed, Nasreen</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><creatorcontrib>Philipsen, Rick H. H. M.</creatorcontrib><creatorcontrib>Melendez, Jaime</creatorcontrib><creatorcontrib>Moore, David P.</creatorcontrib><creatorcontrib>Moodley, Halvani</creatorcontrib><creatorcontrib>Sewchuran, Tanusha</creatorcontrib><creatorcontrib>Mathew, Denny</creatorcontrib><creatorcontrib>Madhi, Shabir A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Pediatric radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahomed, Nasreen</au><au>van Ginneken, Bram</au><au>Philipsen, Rick H. H. M.</au><au>Melendez, Jaime</au><au>Moore, David P.</au><au>Moodley, Halvani</au><au>Sewchuran, Tanusha</au><au>Mathew, Denny</au><au>Madhi, Shabir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children</atitle><jtitle>Pediatric radiology</jtitle><stitle>Pediatr Radiol</stitle><addtitle>Pediatr Radiol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>50</volume><issue>4</issue><spage>482</spage><epage>491</epage><pages>482-491</pages><issn>0301-0449</issn><eissn>1432-1998</eissn><abstract>Background The chest radiograph is the most common imaging modality to assess childhood pneumonia. It has been used in epidemiological and vaccine efficacy/effectiveness studies on childhood pneumonia. Objective To develop computer-aided diagnosis (CAD4Kids) for chest radiography in children and to evaluate its accuracy in identifying World Health Organization (WHO)-defined chest radiograph primary-endpoint pneumonia compared to a consensus interpretation. Materials and methods Chest radiographs were independently evaluated by three radiologists based on WHO criteria. Automatic lung field segmentation was followed by manual inspection and correction, training, feature extraction and classification. Radiographs were filtered with Gaussian derivatives on multiple scales, extracting texture features to classify each pixel in the lung region. To obtain an image score, the 95 th percentile score of the pixels was used. Training and testing were done in 10-fold cross validation. Results The radiologist majority consensus reading of 858 interpretable chest radiographs included 333 (39%) categorised as primary-endpoint pneumonia, 208 (24%) as other infiltrate only and 317 (37%) as no primary-endpoint pneumonia or other infiltrate. Compared to the reference radiologist consensus reading, CAD4Kids had an area under the receiver operator characteristic (ROC) curve of 0.850 (95% confidence interval [CI] 0.823–0.876), with a sensitivity of 76% and specificity of 80% for identifying primary-endpoint pneumonia on chest radiograph. Furthermore, the ROC curve was 0.810 (95% CI 0.772–0.846) for CAD4Kids identifying primary-endpoint pneumonia compared to other infiltrate only. Conclusion Further development of the CAD4Kids software and validation in multicentre studies are important for future research on computer-aided diagnosis and artificial intelligence in paediatric radiology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31930429</pmid><doi>10.1007/s00247-019-04593-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4442-9872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-0449
ispartof Pediatric radiology, 2020-04, Vol.50 (4), p.482-491
issn 0301-0449
1432-1998
language eng
recordid cdi_proquest_miscellaneous_2338065506
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adolescent
Artificial intelligence
Chest
Child
Child, Preschool
Children
Confidence intervals
Diagnosis
Diagnosis, Computer-Assisted - methods
Epidemiology
Evaluation
Feature extraction
Female
Humans
Image classification
Image segmentation
Imaging
Infant
Infant, Newborn
Inspection
Lungs
Male
Medical diagnosis
Medicine
Medicine & Public Health
Neuroradiology
Nuclear Medicine
Oncology
Original Article
Pediatrics
Pixels
Pneumonia
Pneumonia - diagnostic imaging
Radiographs
Radiography
Radiography, Thoracic - methods
Radiology
Training
Ultrasound
Vaccine efficacy
World Health Organization
title Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20diagnosis%20for%20World%20Health%20Organization-defined%20chest%20radiograph%20primary-endpoint%20pneumonia%20in%20children&rft.jtitle=Pediatric%20radiology&rft.au=Mahomed,%20Nasreen&rft.date=2020-04-01&rft.volume=50&rft.issue=4&rft.spage=482&rft.epage=491&rft.pages=482-491&rft.issn=0301-0449&rft.eissn=1432-1998&rft_id=info:doi/10.1007/s00247-019-04593-0&rft_dat=%3Cproquest_cross%3E2376507903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376507903&rft_id=info:pmid/31930429&rfr_iscdi=true