Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community

Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil–water deficits. Yet, the link between plant drought resistance and phenology remains unclear in perennial grassland ecosystems. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 2020-01, Vol.192 (1), p.55-66
Hauptverfasser: Ocheltree, T. W., Mueller, K. M., Chesus, K., LeCain, D. R., Kray, J. A., Blumenthal, D. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 55
container_title Oecologia
container_volume 192
creator Ocheltree, T. W.
Mueller, K. M.
Chesus, K.
LeCain, D. R.
Kray, J. A.
Blumenthal, D. M.
description Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil–water deficits. Yet, the link between plant drought resistance and phenology remains unclear in perennial grassland ecosystems. To evaluate the role of soil water availability and plant drought tolerance in driving phenology, we measured leaf hydraulic conductance (Ksat), resistance to hydraulic failure (P₅₀), leaf gas exchange, plant and soil water stable isotope ratios (δ¹⁸O), and several phenology metrics on ten perennial herbaceous species in mixedgrass prairie. The interaction between P₅₀ and δ¹⁸O of xylem water explained 67% of differences in phenology, with lower P₅₀ values associated with later season activity, but only among shallow-rooted species. In addition, stomatal control and high water-use efficiency also contributed to the late flowering and late senescence strategies of plants that had low P₅₀ values and relied upon shallow soil water. Alternatively, plants with deeper roots did not possess drought-tolerant leaves, but had high hydraulic efficiency, contributing to their ability to efficiently move water longer distances while maintaining leaf water potential at relatively high values. The suites of traits that characterize these contrasting strategies provide a mechanistic link between phenology and plant–water relations; thus, these traits could help predict grassland community responses to changes in water availability, both temporally and vertically within the soil profile.
doi_str_mv 10.1007/s00442-019-04567-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338058089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611982345</galeid><jstor_id>48695812</jstor_id><sourcerecordid>A611982345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-3dc7ef133f9113c78c7762742f681a003aa10329408fa595d0e48bdcbb9732e23</originalsourceid><addsrcrecordid>eNp9ktuKFDEQhoMo7rj6AoIS8EYves2pu5PLZfEwsCB4uA6ZdLonQ3cyptIw-wo-tZntdZcRkVwkVL7_p6r4EXpJyQUlpH0PhAjBKkJVRUTdtNXhEVpRwVlFFVeP0YoQpipZC3WGngHsCKGC1vVTdMYLwBSjK_Rr3bmQfe-tyT4GHHsMs88Ojq-cjM-A89Zk7A770fgAuEtxHrYZJwcesgnWYRM6vN-6EMc4FKMR703OLoVbkyILxcQHbDC4yVcm-Q4PyQCMR6GN0zQHn2-eoye9GcG9uLvP0Y-PH75ffa6uv3xaX11eV1YomSve2db1lPNeUcptK23bNqwVrG8kNYRwYygp0wkie1OruiNOyE1nNxvVcuYYP0dvF999ij9nB1lPHqwbSzcuzqAZ55LUkkhV0Dd_obs4p1C6K1RZtOAN4Q_UYEanfehjWZw9murLhlIlC1sX6uIfVDldWYqNwfW-1E8E704EhcnukAczA-j1t6-nLFtYmyJAcr3eJz-ZdKMp0cew6CUsuoRF34ZFH4ro9d1082Zy3b3kTzoKwBcAylcYXHoY_7-2rxbVDnJM965CNqqWlPHfYGDTgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343243603</pqid></control><display><type>article</type><title>Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community</title><source>MEDLINE</source><source>SpringerLink</source><source>JSTOR</source><creator>Ocheltree, T. W. ; Mueller, K. M. ; Chesus, K. ; LeCain, D. R. ; Kray, J. A. ; Blumenthal, D. M.</creator><creatorcontrib>Ocheltree, T. W. ; Mueller, K. M. ; Chesus, K. ; LeCain, D. R. ; Kray, J. A. ; Blumenthal, D. M.</creatorcontrib><description>Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil–water deficits. Yet, the link between plant drought resistance and phenology remains unclear in perennial grassland ecosystems. To evaluate the role of soil water availability and plant drought tolerance in driving phenology, we measured leaf hydraulic conductance (Ksat), resistance to hydraulic failure (P₅₀), leaf gas exchange, plant and soil water stable isotope ratios (δ¹⁸O), and several phenology metrics on ten perennial herbaceous species in mixedgrass prairie. The interaction between P₅₀ and δ¹⁸O of xylem water explained 67% of differences in phenology, with lower P₅₀ values associated with later season activity, but only among shallow-rooted species. In addition, stomatal control and high water-use efficiency also contributed to the late flowering and late senescence strategies of plants that had low P₅₀ values and relied upon shallow soil water. Alternatively, plants with deeper roots did not possess drought-tolerant leaves, but had high hydraulic efficiency, contributing to their ability to efficiently move water longer distances while maintaining leaf water potential at relatively high values. The suites of traits that characterize these contrasting strategies provide a mechanistic link between phenology and plant–water relations; thus, these traits could help predict grassland community responses to changes in water availability, both temporally and vertically within the soil profile.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-019-04567-x</identifier><identifier>PMID: 31932921</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Aridity ; Availability ; Biomedical and Life Sciences ; Conductance ; Drought ; Drought resistance ; Droughts ; Ecology ; Ecosystem ; Ecosystems ; Flowering ; Gas exchange ; Grassland ; Grasslands ; Hydraulics ; Hydrology/Water Resources ; Isotope ratios ; Leaves ; Life Sciences ; Moisture content ; Niches ; Phenology ; PHYSIOLOGICAL ECOLOGY – ORIGINAL RESEARCH ; Plant Leaves ; Plant Sciences ; Plants ; Plants (botany) ; Ratios ; Resistance ; Senescence ; Soil ; Soil moisture ; Soil profiles ; Soil properties ; Soil stresses ; Soil water ; Soils ; Stable isotopes ; Stomata ; Water ; Water availability ; Water potential ; Water relations ; Water use ; Xylem</subject><ispartof>Oecologia, 2020-01, Vol.192 (1), p.55-66</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Oecologia is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-3dc7ef133f9113c78c7762742f681a003aa10329408fa595d0e48bdcbb9732e23</citedby><cites>FETCH-LOGICAL-c498t-3dc7ef133f9113c78c7762742f681a003aa10329408fa595d0e48bdcbb9732e23</cites><orcidid>0000-0002-7707-5639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48695812$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48695812$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31932921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ocheltree, T. W.</creatorcontrib><creatorcontrib>Mueller, K. M.</creatorcontrib><creatorcontrib>Chesus, K.</creatorcontrib><creatorcontrib>LeCain, D. R.</creatorcontrib><creatorcontrib>Kray, J. A.</creatorcontrib><creatorcontrib>Blumenthal, D. M.</creatorcontrib><title>Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>Oecologia</addtitle><description>Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil–water deficits. Yet, the link between plant drought resistance and phenology remains unclear in perennial grassland ecosystems. To evaluate the role of soil water availability and plant drought tolerance in driving phenology, we measured leaf hydraulic conductance (Ksat), resistance to hydraulic failure (P₅₀), leaf gas exchange, plant and soil water stable isotope ratios (δ¹⁸O), and several phenology metrics on ten perennial herbaceous species in mixedgrass prairie. The interaction between P₅₀ and δ¹⁸O of xylem water explained 67% of differences in phenology, with lower P₅₀ values associated with later season activity, but only among shallow-rooted species. In addition, stomatal control and high water-use efficiency also contributed to the late flowering and late senescence strategies of plants that had low P₅₀ values and relied upon shallow soil water. Alternatively, plants with deeper roots did not possess drought-tolerant leaves, but had high hydraulic efficiency, contributing to their ability to efficiently move water longer distances while maintaining leaf water potential at relatively high values. The suites of traits that characterize these contrasting strategies provide a mechanistic link between phenology and plant–water relations; thus, these traits could help predict grassland community responses to changes in water availability, both temporally and vertically within the soil profile.</description><subject>Aridity</subject><subject>Availability</subject><subject>Biomedical and Life Sciences</subject><subject>Conductance</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Flowering</subject><subject>Gas exchange</subject><subject>Grassland</subject><subject>Grasslands</subject><subject>Hydraulics</subject><subject>Hydrology/Water Resources</subject><subject>Isotope ratios</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Moisture content</subject><subject>Niches</subject><subject>Phenology</subject><subject>PHYSIOLOGICAL ECOLOGY – ORIGINAL RESEARCH</subject><subject>Plant Leaves</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Ratios</subject><subject>Resistance</subject><subject>Senescence</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soil profiles</subject><subject>Soil properties</subject><subject>Soil stresses</subject><subject>Soil water</subject><subject>Soils</subject><subject>Stable isotopes</subject><subject>Stomata</subject><subject>Water</subject><subject>Water availability</subject><subject>Water potential</subject><subject>Water relations</subject><subject>Water use</subject><subject>Xylem</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ktuKFDEQhoMo7rj6AoIS8EYves2pu5PLZfEwsCB4uA6ZdLonQ3cyptIw-wo-tZntdZcRkVwkVL7_p6r4EXpJyQUlpH0PhAjBKkJVRUTdtNXhEVpRwVlFFVeP0YoQpipZC3WGngHsCKGC1vVTdMYLwBSjK_Rr3bmQfe-tyT4GHHsMs88Ojq-cjM-A89Zk7A770fgAuEtxHrYZJwcesgnWYRM6vN-6EMc4FKMR703OLoVbkyILxcQHbDC4yVcm-Q4PyQCMR6GN0zQHn2-eoye9GcG9uLvP0Y-PH75ffa6uv3xaX11eV1YomSve2db1lPNeUcptK23bNqwVrG8kNYRwYygp0wkie1OruiNOyE1nNxvVcuYYP0dvF999ij9nB1lPHqwbSzcuzqAZ55LUkkhV0Dd_obs4p1C6K1RZtOAN4Q_UYEanfehjWZw9murLhlIlC1sX6uIfVDldWYqNwfW-1E8E704EhcnukAczA-j1t6-nLFtYmyJAcr3eJz-ZdKMp0cew6CUsuoRF34ZFH4ro9d1082Zy3b3kTzoKwBcAylcYXHoY_7-2rxbVDnJM965CNqqWlPHfYGDTgg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ocheltree, T. W.</creator><creator>Mueller, K. M.</creator><creator>Chesus, K.</creator><creator>LeCain, D. R.</creator><creator>Kray, J. A.</creator><creator>Blumenthal, D. M.</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7707-5639</orcidid></search><sort><creationdate>20200101</creationdate><title>Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community</title><author>Ocheltree, T. W. ; Mueller, K. M. ; Chesus, K. ; LeCain, D. R. ; Kray, J. A. ; Blumenthal, D. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-3dc7ef133f9113c78c7762742f681a003aa10329408fa595d0e48bdcbb9732e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aridity</topic><topic>Availability</topic><topic>Biomedical and Life Sciences</topic><topic>Conductance</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Flowering</topic><topic>Gas exchange</topic><topic>Grassland</topic><topic>Grasslands</topic><topic>Hydraulics</topic><topic>Hydrology/Water Resources</topic><topic>Isotope ratios</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Moisture content</topic><topic>Niches</topic><topic>Phenology</topic><topic>PHYSIOLOGICAL ECOLOGY – ORIGINAL RESEARCH</topic><topic>Plant Leaves</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Ratios</topic><topic>Resistance</topic><topic>Senescence</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soil profiles</topic><topic>Soil properties</topic><topic>Soil stresses</topic><topic>Soil water</topic><topic>Soils</topic><topic>Stable isotopes</topic><topic>Stomata</topic><topic>Water</topic><topic>Water availability</topic><topic>Water potential</topic><topic>Water relations</topic><topic>Water use</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ocheltree, T. W.</creatorcontrib><creatorcontrib>Mueller, K. M.</creatorcontrib><creatorcontrib>Chesus, K.</creatorcontrib><creatorcontrib>LeCain, D. R.</creatorcontrib><creatorcontrib>Kray, J. A.</creatorcontrib><creatorcontrib>Blumenthal, D. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ocheltree, T. W.</au><au>Mueller, K. M.</au><au>Chesus, K.</au><au>LeCain, D. R.</au><au>Kray, J. A.</au><au>Blumenthal, D. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><addtitle>Oecologia</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>192</volume><issue>1</issue><spage>55</spage><epage>66</epage><pages>55-66</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><abstract>Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil–water deficits. Yet, the link between plant drought resistance and phenology remains unclear in perennial grassland ecosystems. To evaluate the role of soil water availability and plant drought tolerance in driving phenology, we measured leaf hydraulic conductance (Ksat), resistance to hydraulic failure (P₅₀), leaf gas exchange, plant and soil water stable isotope ratios (δ¹⁸O), and several phenology metrics on ten perennial herbaceous species in mixedgrass prairie. The interaction between P₅₀ and δ¹⁸O of xylem water explained 67% of differences in phenology, with lower P₅₀ values associated with later season activity, but only among shallow-rooted species. In addition, stomatal control and high water-use efficiency also contributed to the late flowering and late senescence strategies of plants that had low P₅₀ values and relied upon shallow soil water. Alternatively, plants with deeper roots did not possess drought-tolerant leaves, but had high hydraulic efficiency, contributing to their ability to efficiently move water longer distances while maintaining leaf water potential at relatively high values. The suites of traits that characterize these contrasting strategies provide a mechanistic link between phenology and plant–water relations; thus, these traits could help predict grassland community responses to changes in water availability, both temporally and vertically within the soil profile.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>31932921</pmid><doi>10.1007/s00442-019-04567-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7707-5639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-8549
ispartof Oecologia, 2020-01, Vol.192 (1), p.55-66
issn 0029-8549
1432-1939
language eng
recordid cdi_proquest_miscellaneous_2338058089
source MEDLINE; SpringerLink; JSTOR
subjects Aridity
Availability
Biomedical and Life Sciences
Conductance
Drought
Drought resistance
Droughts
Ecology
Ecosystem
Ecosystems
Flowering
Gas exchange
Grassland
Grasslands
Hydraulics
Hydrology/Water Resources
Isotope ratios
Leaves
Life Sciences
Moisture content
Niches
Phenology
PHYSIOLOGICAL ECOLOGY – ORIGINAL RESEARCH
Plant Leaves
Plant Sciences
Plants
Plants (botany)
Ratios
Resistance
Senescence
Soil
Soil moisture
Soil profiles
Soil properties
Soil stresses
Soil water
Soils
Stable isotopes
Stomata
Water
Water availability
Water potential
Water relations
Water use
Xylem
title Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T14%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20suites%20of%20traits%20that%20explains%20drought%20resistance%20and%20phenological%20patterns%20of%20plants%20in%20a%20semi-arid%20grassland%20community&rft.jtitle=Oecologia&rft.au=Ocheltree,%20T.%20W.&rft.date=2020-01-01&rft.volume=192&rft.issue=1&rft.spage=55&rft.epage=66&rft.pages=55-66&rft.issn=0029-8549&rft.eissn=1432-1939&rft_id=info:doi/10.1007/s00442-019-04567-x&rft_dat=%3Cgale_proqu%3EA611982345%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343243603&rft_id=info:pmid/31932921&rft_galeid=A611982345&rft_jstor_id=48695812&rfr_iscdi=true