Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing

While interstitial fibrosis plays a significant role in heart failure, our understanding of disease progression in humans is limited. To address this limitation, we have engineered a cardiac-fibrosis-on-a-chip model consisting of a microfabricated device with live force measurement capabilities usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2020-03, Vol.233, p.119741-119741, Article 119741
Hauptverfasser: Mastikhina, Olya, Moon, Byeong-Ui, Williams, Kenneth, Hatkar, Rupal, Gustafson, Dakota, Mourad, Omar, Sun, Xuetao, Koo, Margaret, Lam, Alan Y.L., Sun, Yu, Fish, Jason E., Young, Edmond W.K., Nunes, Sara S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119741
container_issue
container_start_page 119741
container_title Biomaterials
container_volume 233
creator Mastikhina, Olya
Moon, Byeong-Ui
Williams, Kenneth
Hatkar, Rupal
Gustafson, Dakota
Mourad, Omar
Sun, Xuetao
Koo, Margaret
Lam, Alan Y.L.
Sun, Yu
Fish, Jason E.
Young, Edmond W.K.
Nunes, Sara S.
description While interstitial fibrosis plays a significant role in heart failure, our understanding of disease progression in humans is limited. To address this limitation, we have engineered a cardiac-fibrosis-on-a-chip model consisting of a microfabricated device with live force measurement capabilities using co-cultured human cardiac fibroblasts and pluripotent stem cell-derived cardiomyocytes. Transforming growth factor-β was used as a trigger for fibrosis. Here, we have reproduced the classic hallmarks of fibrosis-induced heart failure including high collagen deposition, increased tissue stiffness, BNP secretion, and passive tension. Force of contraction was significantly decreased in fibrotic tissues that displayed a transcriptomic signature consistent with human cardiac fibrosis/heart failure. Treatment with an anti-fibrotic drug decreased tissue stiffness and BNP secretion, with corresponding changes in the transcriptomic signature. This model represents an accessible approach to study human heart failure in vitro, and allows for testing anti-fibrotic drugs while facilitating the real-time assessment of cardiomyocyte function. [Display omitted]
doi_str_mv 10.1016/j.biomaterials.2019.119741
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2337071847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961219308592</els_id><sourcerecordid>2337071847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-bd14062130f6328b91bb33c31d750c618ebd9003b7dc451f4d223444c03a1b833</originalsourceid><addsrcrecordid>eNqNkEtPHDEQhC0UBAvJX4isnHKZxW17XtwiIICExCU5W370gDfzwp5B4t_TaEnEMRdbtqq6uj7GvoHYgoDqbLd1cRrsginaPm-lgHYL0NYaDtgGmropylaUn9hGgJZFW4E8Zic57wS9hZZH7FhBK2tZwoblm3WwI_c2hWg976JLU465mMbCFv4xznyYAvY8obdzXNaeYjMPMaPNyB9t3w82_cncjoGGjDxjekZu6YPPpO2mNHA6eEjrAyfrEseHz-ywo8Xxy_t9yn7_vPp1cVPc3V_fXvy4K7xu2qVwgdatJCjRVUo2rgXnlPIKQl0KX0GDLrRCKFcHr0vodJBSaa29UBZco9Qp-76fO6fpaaVsM8Tsse_tiNOajVSqFjU0uibp-V7qqX5O2Jk5RWr2YkCYN-hmZz5CN2_QzR46mb--56xuwPDP-pcyCS73AqS2zxGTyT7i6DFE4rqYMMX_yXkF5t-abw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2337071847</pqid></control><display><type>article</type><title>Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mastikhina, Olya ; Moon, Byeong-Ui ; Williams, Kenneth ; Hatkar, Rupal ; Gustafson, Dakota ; Mourad, Omar ; Sun, Xuetao ; Koo, Margaret ; Lam, Alan Y.L. ; Sun, Yu ; Fish, Jason E. ; Young, Edmond W.K. ; Nunes, Sara S.</creator><creatorcontrib>Mastikhina, Olya ; Moon, Byeong-Ui ; Williams, Kenneth ; Hatkar, Rupal ; Gustafson, Dakota ; Mourad, Omar ; Sun, Xuetao ; Koo, Margaret ; Lam, Alan Y.L. ; Sun, Yu ; Fish, Jason E. ; Young, Edmond W.K. ; Nunes, Sara S.</creatorcontrib><description>While interstitial fibrosis plays a significant role in heart failure, our understanding of disease progression in humans is limited. To address this limitation, we have engineered a cardiac-fibrosis-on-a-chip model consisting of a microfabricated device with live force measurement capabilities using co-cultured human cardiac fibroblasts and pluripotent stem cell-derived cardiomyocytes. Transforming growth factor-β was used as a trigger for fibrosis. Here, we have reproduced the classic hallmarks of fibrosis-induced heart failure including high collagen deposition, increased tissue stiffness, BNP secretion, and passive tension. Force of contraction was significantly decreased in fibrotic tissues that displayed a transcriptomic signature consistent with human cardiac fibrosis/heart failure. Treatment with an anti-fibrotic drug decreased tissue stiffness and BNP secretion, with corresponding changes in the transcriptomic signature. This model represents an accessible approach to study human heart failure in vitro, and allows for testing anti-fibrotic drugs while facilitating the real-time assessment of cardiomyocyte function. [Display omitted]</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2019.119741</identifier><identifier>PMID: 31927251</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Cardiac fibrosis ; Carvediolol ; Cells, Cultured ; Disease modeling ; Extracellular vesicles ; Fibroblasts - pathology ; Fibrosis ; Force of contraction ; Heart failure ; Human stem cell-derived cardiomyocytes ; Humans ; Lab-On-A-Chip Devices ; Losartan ; microRNA ; Myocardium - pathology ; Myocytes, Cardiac - pathology ; Organ-on-a-chip ; Pharmaceutical Preparations ; Pirfenidone ; Tissue engineering</subject><ispartof>Biomaterials, 2020-03, Vol.233, p.119741-119741, Article 119741</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-bd14062130f6328b91bb33c31d750c618ebd9003b7dc451f4d223444c03a1b833</citedby><cites>FETCH-LOGICAL-c489t-bd14062130f6328b91bb33c31d750c618ebd9003b7dc451f4d223444c03a1b833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2019.119741$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31927251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mastikhina, Olya</creatorcontrib><creatorcontrib>Moon, Byeong-Ui</creatorcontrib><creatorcontrib>Williams, Kenneth</creatorcontrib><creatorcontrib>Hatkar, Rupal</creatorcontrib><creatorcontrib>Gustafson, Dakota</creatorcontrib><creatorcontrib>Mourad, Omar</creatorcontrib><creatorcontrib>Sun, Xuetao</creatorcontrib><creatorcontrib>Koo, Margaret</creatorcontrib><creatorcontrib>Lam, Alan Y.L.</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Fish, Jason E.</creatorcontrib><creatorcontrib>Young, Edmond W.K.</creatorcontrib><creatorcontrib>Nunes, Sara S.</creatorcontrib><title>Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>While interstitial fibrosis plays a significant role in heart failure, our understanding of disease progression in humans is limited. To address this limitation, we have engineered a cardiac-fibrosis-on-a-chip model consisting of a microfabricated device with live force measurement capabilities using co-cultured human cardiac fibroblasts and pluripotent stem cell-derived cardiomyocytes. Transforming growth factor-β was used as a trigger for fibrosis. Here, we have reproduced the classic hallmarks of fibrosis-induced heart failure including high collagen deposition, increased tissue stiffness, BNP secretion, and passive tension. Force of contraction was significantly decreased in fibrotic tissues that displayed a transcriptomic signature consistent with human cardiac fibrosis/heart failure. Treatment with an anti-fibrotic drug decreased tissue stiffness and BNP secretion, with corresponding changes in the transcriptomic signature. This model represents an accessible approach to study human heart failure in vitro, and allows for testing anti-fibrotic drugs while facilitating the real-time assessment of cardiomyocyte function. [Display omitted]</description><subject>Cardiac fibrosis</subject><subject>Carvediolol</subject><subject>Cells, Cultured</subject><subject>Disease modeling</subject><subject>Extracellular vesicles</subject><subject>Fibroblasts - pathology</subject><subject>Fibrosis</subject><subject>Force of contraction</subject><subject>Heart failure</subject><subject>Human stem cell-derived cardiomyocytes</subject><subject>Humans</subject><subject>Lab-On-A-Chip Devices</subject><subject>Losartan</subject><subject>microRNA</subject><subject>Myocardium - pathology</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Organ-on-a-chip</subject><subject>Pharmaceutical Preparations</subject><subject>Pirfenidone</subject><subject>Tissue engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtPHDEQhC0UBAvJX4isnHKZxW17XtwiIICExCU5W370gDfzwp5B4t_TaEnEMRdbtqq6uj7GvoHYgoDqbLd1cRrsginaPm-lgHYL0NYaDtgGmropylaUn9hGgJZFW4E8Zic57wS9hZZH7FhBK2tZwoblm3WwI_c2hWg976JLU465mMbCFv4xznyYAvY8obdzXNaeYjMPMaPNyB9t3w82_cncjoGGjDxjekZu6YPPpO2mNHA6eEjrAyfrEseHz-ywo8Xxy_t9yn7_vPp1cVPc3V_fXvy4K7xu2qVwgdatJCjRVUo2rgXnlPIKQl0KX0GDLrRCKFcHr0vodJBSaa29UBZco9Qp-76fO6fpaaVsM8Tsse_tiNOajVSqFjU0uibp-V7qqX5O2Jk5RWr2YkCYN-hmZz5CN2_QzR46mb--56xuwPDP-pcyCS73AqS2zxGTyT7i6DFE4rqYMMX_yXkF5t-abw</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Mastikhina, Olya</creator><creator>Moon, Byeong-Ui</creator><creator>Williams, Kenneth</creator><creator>Hatkar, Rupal</creator><creator>Gustafson, Dakota</creator><creator>Mourad, Omar</creator><creator>Sun, Xuetao</creator><creator>Koo, Margaret</creator><creator>Lam, Alan Y.L.</creator><creator>Sun, Yu</creator><creator>Fish, Jason E.</creator><creator>Young, Edmond W.K.</creator><creator>Nunes, Sara S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202003</creationdate><title>Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing</title><author>Mastikhina, Olya ; Moon, Byeong-Ui ; Williams, Kenneth ; Hatkar, Rupal ; Gustafson, Dakota ; Mourad, Omar ; Sun, Xuetao ; Koo, Margaret ; Lam, Alan Y.L. ; Sun, Yu ; Fish, Jason E. ; Young, Edmond W.K. ; Nunes, Sara S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-bd14062130f6328b91bb33c31d750c618ebd9003b7dc451f4d223444c03a1b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cardiac fibrosis</topic><topic>Carvediolol</topic><topic>Cells, Cultured</topic><topic>Disease modeling</topic><topic>Extracellular vesicles</topic><topic>Fibroblasts - pathology</topic><topic>Fibrosis</topic><topic>Force of contraction</topic><topic>Heart failure</topic><topic>Human stem cell-derived cardiomyocytes</topic><topic>Humans</topic><topic>Lab-On-A-Chip Devices</topic><topic>Losartan</topic><topic>microRNA</topic><topic>Myocardium - pathology</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Organ-on-a-chip</topic><topic>Pharmaceutical Preparations</topic><topic>Pirfenidone</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mastikhina, Olya</creatorcontrib><creatorcontrib>Moon, Byeong-Ui</creatorcontrib><creatorcontrib>Williams, Kenneth</creatorcontrib><creatorcontrib>Hatkar, Rupal</creatorcontrib><creatorcontrib>Gustafson, Dakota</creatorcontrib><creatorcontrib>Mourad, Omar</creatorcontrib><creatorcontrib>Sun, Xuetao</creatorcontrib><creatorcontrib>Koo, Margaret</creatorcontrib><creatorcontrib>Lam, Alan Y.L.</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Fish, Jason E.</creatorcontrib><creatorcontrib>Young, Edmond W.K.</creatorcontrib><creatorcontrib>Nunes, Sara S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mastikhina, Olya</au><au>Moon, Byeong-Ui</au><au>Williams, Kenneth</au><au>Hatkar, Rupal</au><au>Gustafson, Dakota</au><au>Mourad, Omar</au><au>Sun, Xuetao</au><au>Koo, Margaret</au><au>Lam, Alan Y.L.</au><au>Sun, Yu</au><au>Fish, Jason E.</au><au>Young, Edmond W.K.</au><au>Nunes, Sara S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2020-03</date><risdate>2020</risdate><volume>233</volume><spage>119741</spage><epage>119741</epage><pages>119741-119741</pages><artnum>119741</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>While interstitial fibrosis plays a significant role in heart failure, our understanding of disease progression in humans is limited. To address this limitation, we have engineered a cardiac-fibrosis-on-a-chip model consisting of a microfabricated device with live force measurement capabilities using co-cultured human cardiac fibroblasts and pluripotent stem cell-derived cardiomyocytes. Transforming growth factor-β was used as a trigger for fibrosis. Here, we have reproduced the classic hallmarks of fibrosis-induced heart failure including high collagen deposition, increased tissue stiffness, BNP secretion, and passive tension. Force of contraction was significantly decreased in fibrotic tissues that displayed a transcriptomic signature consistent with human cardiac fibrosis/heart failure. Treatment with an anti-fibrotic drug decreased tissue stiffness and BNP secretion, with corresponding changes in the transcriptomic signature. This model represents an accessible approach to study human heart failure in vitro, and allows for testing anti-fibrotic drugs while facilitating the real-time assessment of cardiomyocyte function. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>31927251</pmid><doi>10.1016/j.biomaterials.2019.119741</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2020-03, Vol.233, p.119741-119741, Article 119741
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2337071847
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Cardiac fibrosis
Carvediolol
Cells, Cultured
Disease modeling
Extracellular vesicles
Fibroblasts - pathology
Fibrosis
Force of contraction
Heart failure
Human stem cell-derived cardiomyocytes
Humans
Lab-On-A-Chip Devices
Losartan
microRNA
Myocardium - pathology
Myocytes, Cardiac - pathology
Organ-on-a-chip
Pharmaceutical Preparations
Pirfenidone
Tissue engineering
title Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20cardiac%20fibrosis-on-a-chip%20model%20recapitulates%20disease%20hallmarks%20and%20can%20serve%20as%20a%20platform%20for%20drug%20testing&rft.jtitle=Biomaterials&rft.au=Mastikhina,%20Olya&rft.date=2020-03&rft.volume=233&rft.spage=119741&rft.epage=119741&rft.pages=119741-119741&rft.artnum=119741&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2019.119741&rft_dat=%3Cproquest_cross%3E2337071847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2337071847&rft_id=info:pmid/31927251&rft_els_id=S0142961219308592&rfr_iscdi=true