CT Image-Guided Electrical Impedance Tomography for Medical Imaging

This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-06, Vol.39 (6), p.1822-1832
Hauptverfasser: Li, Ziang, Zhang, Jie, Liu, Dong, Du, Jiangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1832
container_issue 6
container_start_page 1822
container_title IEEE transactions on medical imaging
container_volume 39
creator Li, Ziang
Zhang, Jie
Liu, Dong
Du, Jiangfeng
description This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images.
doi_str_mv 10.1109/TMI.2019.2958670
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2337002867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8930605</ieee_id><sourcerecordid>2409384936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-effa054d8507cabc551344422fd0efc91046a285c56e91e07272c85b7011f1cf3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps5_JHiVoLbR4ieBt2W5mY0q-3DSH_ntTWjx4Ghie92XmIeSewoJS0M_5ZrVgQPWCaZmqBC7IjEqZxkyKr0syA5akMYBi1-RmGHYAVEjQM5JlebRqbInxcqwKLKLXGt0-VM7W077HwrYOo7xrujLY_vsQ-S5EGyzOgC2rtrwlV97WA96d55x8vr3m2Xu8_liuspd17LhS-xi9tyBFkUpInN06KSkXQjDmC0DvNAWhLEulkwo1RUhYwlwqtwlQ6qnzfE6eTr196H5GHPamqQaHdW1b7MbBMM4TADZ9P6GP_9BdN4Z2us4wAZqnQnM1UXCiXOiGIaA3fagaGw6GgjlaNZNVc7RqzlanyMMpUiHiH55qDgok_wWNg3Da</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409384936</pqid></control><display><type>article</type><title>CT Image-Guided Electrical Impedance Tomography for Medical Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ziang ; Zhang, Jie ; Liu, Dong ; Du, Jiangfeng</creator><creatorcontrib>Li, Ziang ; Zhang, Jie ; Liu, Dong ; Du, Jiangfeng</creatorcontrib><description>This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2958670</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Abnormalities ; Computed tomography ; Computer simulation ; Conductivity ; cross-gradient function ; Electrical conductivity ; Electrical impedance ; electrical impedance tomography ; Electrical resistivity ; Electrodes ; Finite element analysis ; Geological structures ; Image quality ; Impedance ; Inversion ; lung imaging ; Mathematical model ; Mathematical models ; Medical imaging ; Natural gas exploration ; Oil and gas exploration ; Oil exploration ; Polarity ; Robustness (mathematics) ; Spatial discrimination ; Spatial resolution ; Tomography</subject><ispartof>IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.1822-1832</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-effa054d8507cabc551344422fd0efc91046a285c56e91e07272c85b7011f1cf3</citedby><cites>FETCH-LOGICAL-c366t-effa054d8507cabc551344422fd0efc91046a285c56e91e07272c85b7011f1cf3</cites><orcidid>0000-0001-8085-8012 ; 0000-0001-7483-7872 ; 0000-0002-9645-7683 ; 0000-0002-0530-3954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8930605$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><title>CT Image-Guided Electrical Impedance Tomography for Medical Imaging</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images.</description><subject>Abnormalities</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>cross-gradient function</subject><subject>Electrical conductivity</subject><subject>Electrical impedance</subject><subject>electrical impedance tomography</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Finite element analysis</subject><subject>Geological structures</subject><subject>Image quality</subject><subject>Impedance</subject><subject>Inversion</subject><subject>lung imaging</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Natural gas exploration</subject><subject>Oil and gas exploration</subject><subject>Oil exploration</subject><subject>Polarity</subject><subject>Robustness (mathematics)</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Tomography</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps5_JHiVoLbR4ieBt2W5mY0q-3DSH_ntTWjx4Ghie92XmIeSewoJS0M_5ZrVgQPWCaZmqBC7IjEqZxkyKr0syA5akMYBi1-RmGHYAVEjQM5JlebRqbInxcqwKLKLXGt0-VM7W077HwrYOo7xrujLY_vsQ-S5EGyzOgC2rtrwlV97WA96d55x8vr3m2Xu8_liuspd17LhS-xi9tyBFkUpInN06KSkXQjDmC0DvNAWhLEulkwo1RUhYwlwqtwlQ6qnzfE6eTr196H5GHPamqQaHdW1b7MbBMM4TADZ9P6GP_9BdN4Z2us4wAZqnQnM1UXCiXOiGIaA3fagaGw6GgjlaNZNVc7RqzlanyMMpUiHiH55qDgok_wWNg3Da</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Ziang</creator><creator>Zhang, Jie</creator><creator>Liu, Dong</creator><creator>Du, Jiangfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8085-8012</orcidid><orcidid>https://orcid.org/0000-0001-7483-7872</orcidid><orcidid>https://orcid.org/0000-0002-9645-7683</orcidid><orcidid>https://orcid.org/0000-0002-0530-3954</orcidid></search><sort><creationdate>20200601</creationdate><title>CT Image-Guided Electrical Impedance Tomography for Medical Imaging</title><author>Li, Ziang ; Zhang, Jie ; Liu, Dong ; Du, Jiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-effa054d8507cabc551344422fd0efc91046a285c56e91e07272c85b7011f1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abnormalities</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>cross-gradient function</topic><topic>Electrical conductivity</topic><topic>Electrical impedance</topic><topic>electrical impedance tomography</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Finite element analysis</topic><topic>Geological structures</topic><topic>Image quality</topic><topic>Impedance</topic><topic>Inversion</topic><topic>lung imaging</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Natural gas exploration</topic><topic>Oil and gas exploration</topic><topic>Oil exploration</topic><topic>Polarity</topic><topic>Robustness (mathematics)</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ziang</au><au>Zhang, Jie</au><au>Liu, Dong</au><au>Du, Jiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CT Image-Guided Electrical Impedance Tomography for Medical Imaging</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>1822</spage><epage>1832</epage><pages>1822-1832</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMI.2019.2958670</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8085-8012</orcidid><orcidid>https://orcid.org/0000-0001-7483-7872</orcidid><orcidid>https://orcid.org/0000-0002-9645-7683</orcidid><orcidid>https://orcid.org/0000-0002-0530-3954</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.1822-1832
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2337002867
source IEEE Electronic Library (IEL)
subjects Abnormalities
Computed tomography
Computer simulation
Conductivity
cross-gradient function
Electrical conductivity
Electrical impedance
electrical impedance tomography
Electrical resistivity
Electrodes
Finite element analysis
Geological structures
Image quality
Impedance
Inversion
lung imaging
Mathematical model
Mathematical models
Medical imaging
Natural gas exploration
Oil and gas exploration
Oil exploration
Polarity
Robustness (mathematics)
Spatial discrimination
Spatial resolution
Tomography
title CT Image-Guided Electrical Impedance Tomography for Medical Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CT%20Image-Guided%20Electrical%20Impedance%20Tomography%20for%20Medical%20Imaging&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Ziang&rft.date=2020-06-01&rft.volume=39&rft.issue=6&rft.spage=1822&rft.epage=1832&rft.pages=1822-1832&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2958670&rft_dat=%3Cproquest_cross%3E2409384936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409384936&rft_id=info:pmid/&rft_ieee_id=8930605&rfr_iscdi=true