CT Image-Guided Electrical Impedance Tomography for Medical Imaging
This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2020-06, Vol.39 (6), p.1822-1832 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1832 |
---|---|
container_issue | 6 |
container_start_page | 1822 |
container_title | IEEE transactions on medical imaging |
container_volume | 39 |
creator | Li, Ziang Zhang, Jie Liu, Dong Du, Jiangfeng |
description | This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images. |
doi_str_mv | 10.1109/TMI.2019.2958670 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2337002867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8930605</ieee_id><sourcerecordid>2409384936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-effa054d8507cabc551344422fd0efc91046a285c56e91e07272c85b7011f1cf3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps5_JHiVoLbR4ieBt2W5mY0q-3DSH_ntTWjx4Ghie92XmIeSewoJS0M_5ZrVgQPWCaZmqBC7IjEqZxkyKr0syA5akMYBi1-RmGHYAVEjQM5JlebRqbInxcqwKLKLXGt0-VM7W077HwrYOo7xrujLY_vsQ-S5EGyzOgC2rtrwlV97WA96d55x8vr3m2Xu8_liuspd17LhS-xi9tyBFkUpInN06KSkXQjDmC0DvNAWhLEulkwo1RUhYwlwqtwlQ6qnzfE6eTr196H5GHPamqQaHdW1b7MbBMM4TADZ9P6GP_9BdN4Z2us4wAZqnQnM1UXCiXOiGIaA3fagaGw6GgjlaNZNVc7RqzlanyMMpUiHiH55qDgok_wWNg3Da</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409384936</pqid></control><display><type>article</type><title>CT Image-Guided Electrical Impedance Tomography for Medical Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ziang ; Zhang, Jie ; Liu, Dong ; Du, Jiangfeng</creator><creatorcontrib>Li, Ziang ; Zhang, Jie ; Liu, Dong ; Du, Jiangfeng</creatorcontrib><description>This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2958670</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Abnormalities ; Computed tomography ; Computer simulation ; Conductivity ; cross-gradient function ; Electrical conductivity ; Electrical impedance ; electrical impedance tomography ; Electrical resistivity ; Electrodes ; Finite element analysis ; Geological structures ; Image quality ; Impedance ; Inversion ; lung imaging ; Mathematical model ; Mathematical models ; Medical imaging ; Natural gas exploration ; Oil and gas exploration ; Oil exploration ; Polarity ; Robustness (mathematics) ; Spatial discrimination ; Spatial resolution ; Tomography</subject><ispartof>IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.1822-1832</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-effa054d8507cabc551344422fd0efc91046a285c56e91e07272c85b7011f1cf3</citedby><cites>FETCH-LOGICAL-c366t-effa054d8507cabc551344422fd0efc91046a285c56e91e07272c85b7011f1cf3</cites><orcidid>0000-0001-8085-8012 ; 0000-0001-7483-7872 ; 0000-0002-9645-7683 ; 0000-0002-0530-3954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8930605$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><title>CT Image-Guided Electrical Impedance Tomography for Medical Imaging</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images.</description><subject>Abnormalities</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Conductivity</subject><subject>cross-gradient function</subject><subject>Electrical conductivity</subject><subject>Electrical impedance</subject><subject>electrical impedance tomography</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Finite element analysis</subject><subject>Geological structures</subject><subject>Image quality</subject><subject>Impedance</subject><subject>Inversion</subject><subject>lung imaging</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Natural gas exploration</subject><subject>Oil and gas exploration</subject><subject>Oil exploration</subject><subject>Polarity</subject><subject>Robustness (mathematics)</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Tomography</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps5_JHiVoLbR4ieBt2W5mY0q-3DSH_ntTWjx4Ghie92XmIeSewoJS0M_5ZrVgQPWCaZmqBC7IjEqZxkyKr0syA5akMYBi1-RmGHYAVEjQM5JlebRqbInxcqwKLKLXGt0-VM7W077HwrYOo7xrujLY_vsQ-S5EGyzOgC2rtrwlV97WA96d55x8vr3m2Xu8_liuspd17LhS-xi9tyBFkUpInN06KSkXQjDmC0DvNAWhLEulkwo1RUhYwlwqtwlQ6qnzfE6eTr196H5GHPamqQaHdW1b7MbBMM4TADZ9P6GP_9BdN4Z2us4wAZqnQnM1UXCiXOiGIaA3fagaGw6GgjlaNZNVc7RqzlanyMMpUiHiH55qDgok_wWNg3Da</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Ziang</creator><creator>Zhang, Jie</creator><creator>Liu, Dong</creator><creator>Du, Jiangfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8085-8012</orcidid><orcidid>https://orcid.org/0000-0001-7483-7872</orcidid><orcidid>https://orcid.org/0000-0002-9645-7683</orcidid><orcidid>https://orcid.org/0000-0002-0530-3954</orcidid></search><sort><creationdate>20200601</creationdate><title>CT Image-Guided Electrical Impedance Tomography for Medical Imaging</title><author>Li, Ziang ; Zhang, Jie ; Liu, Dong ; Du, Jiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-effa054d8507cabc551344422fd0efc91046a285c56e91e07272c85b7011f1cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abnormalities</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Conductivity</topic><topic>cross-gradient function</topic><topic>Electrical conductivity</topic><topic>Electrical impedance</topic><topic>electrical impedance tomography</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Finite element analysis</topic><topic>Geological structures</topic><topic>Image quality</topic><topic>Impedance</topic><topic>Inversion</topic><topic>lung imaging</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Natural gas exploration</topic><topic>Oil and gas exploration</topic><topic>Oil exploration</topic><topic>Polarity</topic><topic>Robustness (mathematics)</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ziang</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ziang</au><au>Zhang, Jie</au><au>Liu, Dong</au><au>Du, Jiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CT Image-Guided Electrical Impedance Tomography for Medical Imaging</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>39</volume><issue>6</issue><spage>1822</spage><epage>1832</epage><pages>1822-1832</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This study presents a computed tomography (CT) image-guided electrical impedance tomography (EIT) method for medical imaging. CT is a robust imaging modality for accurately reconstructing the density structure of the region being scanned. EIT can detect electrical impedance abnormalities to which CT scans may be insensitive, but the poor spatial resolution of EIT is a major concern for medical applications. A cross-gradient method has been introduced for oil and gas exploration to jointly invert multiple geophysical datasets associated with different medium properties in the same geological structure. In this study, we develop a CT image-guided EIT (CEIT) based on the cross-gradient method. We assume that both CT scanning and EIT imaging are conducted for the same medical target. A CT scan is first acquired to help solve the subsequent EIT imaging problem. During EIT imaging, we apply cross gradients between the CT image and the electrical conductivity distribution to iteratively constrain the conductivity inversion. The cross-gradient based method allows the mutual structures of different physical models to be referenced without directly affecting the polarity and amplitude of each model during the inversion. We apply the CEIT method to both numerical simulations and phantom experiments. The effectiveness of CEIT is demonstrated in comparison with conventional EIT. The comparison shows that the CEIT method can significantly improve the quality of conductivity images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMI.2019.2958670</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8085-8012</orcidid><orcidid>https://orcid.org/0000-0001-7483-7872</orcidid><orcidid>https://orcid.org/0000-0002-9645-7683</orcidid><orcidid>https://orcid.org/0000-0002-0530-3954</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.1822-1832 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_2337002867 |
source | IEEE Electronic Library (IEL) |
subjects | Abnormalities Computed tomography Computer simulation Conductivity cross-gradient function Electrical conductivity Electrical impedance electrical impedance tomography Electrical resistivity Electrodes Finite element analysis Geological structures Image quality Impedance Inversion lung imaging Mathematical model Mathematical models Medical imaging Natural gas exploration Oil and gas exploration Oil exploration Polarity Robustness (mathematics) Spatial discrimination Spatial resolution Tomography |
title | CT Image-Guided Electrical Impedance Tomography for Medical Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CT%20Image-Guided%20Electrical%20Impedance%20Tomography%20for%20Medical%20Imaging&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Ziang&rft.date=2020-06-01&rft.volume=39&rft.issue=6&rft.spage=1822&rft.epage=1832&rft.pages=1822-1832&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2958670&rft_dat=%3Cproquest_cross%3E2409384936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409384936&rft_id=info:pmid/&rft_ieee_id=8930605&rfr_iscdi=true |