Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat
MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-gen...
Gespeichert in:
Veröffentlicht in: | Genomics (San Diego, Calif.) Calif.), 2020-05, Vol.112 (3), p.2334-2348 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2348 |
---|---|
container_issue | 3 |
container_start_page | 2334 |
container_title | Genomics (San Diego, Calif.) |
container_volume | 112 |
creator | Singh, Amit Kumar Singh, Nidhi Kumar, Sundeep Kumari, Jyoti Singh, Rakesh Gaba, Sonam Yadav, Mahesh C. Grover, Monendra Chaurasia, Shiksha Kumar, Rajesh |
description | MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future.
•Polycitrsonic microRNA (miRNA) loci exist in wheat and these are broadly conserved across the ancestral wheat species.•Expression of 11 polycistronic miRNA loci were validated using previously assembled transcriptomes, deep small RNA sequencing (sRNA-seq) data sets and reverse transcription-polymerase chain reaction (RT-PCR).•miR395 family polycistrons were evolved by duplication and subsequent divergence of an ancestral basic polycitronic unit containing two genes.•Massive loss of nucleotide diversity at majority of the A sub-genome polycistronic miRNA loci during domestication. However, a few polycistronic loci were highly conserved across domesticated and wild wheat. |
doi_str_mv | 10.1016/j.ygeno.2020.01.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2336255638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088875431930730X</els_id><sourcerecordid>2336255638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-1ed2fe45893c872ca1ffdfe4a500ac8ec21d77e1661b6483e1a29464bee664a83</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoVhxZql_QUFBh93sUt9WJEPOwTFPgoELVC0Z0GR6FSBbWWS3SH_fnLT7dgLCRIvX5IPIVcUKgpUXu-r4w6HUDFgUAGtAOoPZEFBNaWSQn4kC1BKlata8HPyOaU9ADRcsU_knNOGSUbrBdndOhxG33prRh-GwgyuwJfQTXNl4jE3THdMPhWhLQ6hO1qfxhgGb4veP9ytC9tNacSYCj8ULvSYxtkK3avTH9_l8IxmvCBnrekSXr7lJXn68f3x5le5uf95e7PelFaAGEuKjrUoatVwq1bMGtq2LjdMDWCsQsuoW62QSkm3UiiO1LBGSLFFlFIYxZfk68n3EMPvKV-je58sdp0ZMExJM84lq2vJZyk_SW0MKUVs9SH6Pv-sKeiZsN7rV8J6JqyB6kw4T315WzBte3T_Z_4hzYJvJwHmN188Rp2sx8Gi8xHtqF3w7y74C59Jj9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336255638</pqid></control><display><type>article</type><title>Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Singh, Amit Kumar ; Singh, Nidhi ; Kumar, Sundeep ; Kumari, Jyoti ; Singh, Rakesh ; Gaba, Sonam ; Yadav, Mahesh C. ; Grover, Monendra ; Chaurasia, Shiksha ; Kumar, Rajesh</creator><creatorcontrib>Singh, Amit Kumar ; Singh, Nidhi ; Kumar, Sundeep ; Kumari, Jyoti ; Singh, Rakesh ; Gaba, Sonam ; Yadav, Mahesh C. ; Grover, Monendra ; Chaurasia, Shiksha ; Kumar, Rajesh</creatorcontrib><description>MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future.
•Polycitrsonic microRNA (miRNA) loci exist in wheat and these are broadly conserved across the ancestral wheat species.•Expression of 11 polycistronic miRNA loci were validated using previously assembled transcriptomes, deep small RNA sequencing (sRNA-seq) data sets and reverse transcription-polymerase chain reaction (RT-PCR).•miR395 family polycistrons were evolved by duplication and subsequent divergence of an ancestral basic polycitronic unit containing two genes.•Massive loss of nucleotide diversity at majority of the A sub-genome polycistronic miRNA loci during domestication. However, a few polycistronic loci were highly conserved across domesticated and wild wheat.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2020.01.005</identifier><identifier>PMID: 31926215</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brachypodium - genetics ; Computer Simulation ; Domestication ; Evolution ; Evolution, Molecular ; Genetic Loci ; Genetic Variation ; Genome, Plant ; MicroRNAs - chemistry ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Nucleic Acid Conformation ; Oryza - genetics ; Polycistronic miRNA ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Precursors - chemistry ; RNA-Seq ; Transcriptome ; Triticum - genetics ; Wheat genome</subject><ispartof>Genomics (San Diego, Calif.), 2020-05, Vol.112 (3), p.2334-2348</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-1ed2fe45893c872ca1ffdfe4a500ac8ec21d77e1661b6483e1a29464bee664a83</citedby><cites>FETCH-LOGICAL-c404t-1ed2fe45893c872ca1ffdfe4a500ac8ec21d77e1661b6483e1a29464bee664a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ygeno.2020.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31926215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Singh, Nidhi</creatorcontrib><creatorcontrib>Kumar, Sundeep</creatorcontrib><creatorcontrib>Kumari, Jyoti</creatorcontrib><creatorcontrib>Singh, Rakesh</creatorcontrib><creatorcontrib>Gaba, Sonam</creatorcontrib><creatorcontrib>Yadav, Mahesh C.</creatorcontrib><creatorcontrib>Grover, Monendra</creatorcontrib><creatorcontrib>Chaurasia, Shiksha</creatorcontrib><creatorcontrib>Kumar, Rajesh</creatorcontrib><title>Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future.
•Polycitrsonic microRNA (miRNA) loci exist in wheat and these are broadly conserved across the ancestral wheat species.•Expression of 11 polycistronic miRNA loci were validated using previously assembled transcriptomes, deep small RNA sequencing (sRNA-seq) data sets and reverse transcription-polymerase chain reaction (RT-PCR).•miR395 family polycistrons were evolved by duplication and subsequent divergence of an ancestral basic polycitronic unit containing two genes.•Massive loss of nucleotide diversity at majority of the A sub-genome polycistronic miRNA loci during domestication. However, a few polycistronic loci were highly conserved across domesticated and wild wheat.</description><subject>Brachypodium - genetics</subject><subject>Computer Simulation</subject><subject>Domestication</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Genetic Loci</subject><subject>Genetic Variation</subject><subject>Genome, Plant</subject><subject>MicroRNAs - chemistry</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Nucleic Acid Conformation</subject><subject>Oryza - genetics</subject><subject>Polycistronic miRNA</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Precursors - chemistry</subject><subject>RNA-Seq</subject><subject>Transcriptome</subject><subject>Triticum - genetics</subject><subject>Wheat genome</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v2zAMhoVhxZql_QUFBh93sUt9WJEPOwTFPgoELVC0Z0GR6FSBbWWS3SH_fnLT7dgLCRIvX5IPIVcUKgpUXu-r4w6HUDFgUAGtAOoPZEFBNaWSQn4kC1BKlata8HPyOaU9ADRcsU_knNOGSUbrBdndOhxG33prRh-GwgyuwJfQTXNl4jE3THdMPhWhLQ6hO1qfxhgGb4veP9ytC9tNacSYCj8ULvSYxtkK3avTH9_l8IxmvCBnrekSXr7lJXn68f3x5le5uf95e7PelFaAGEuKjrUoatVwq1bMGtq2LjdMDWCsQsuoW62QSkm3UiiO1LBGSLFFlFIYxZfk68n3EMPvKV-je58sdp0ZMExJM84lq2vJZyk_SW0MKUVs9SH6Pv-sKeiZsN7rV8J6JqyB6kw4T315WzBte3T_Z_4hzYJvJwHmN188Rp2sx8Gi8xHtqF3w7y74C59Jj9g</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Singh, Amit Kumar</creator><creator>Singh, Nidhi</creator><creator>Kumar, Sundeep</creator><creator>Kumari, Jyoti</creator><creator>Singh, Rakesh</creator><creator>Gaba, Sonam</creator><creator>Yadav, Mahesh C.</creator><creator>Grover, Monendra</creator><creator>Chaurasia, Shiksha</creator><creator>Kumar, Rajesh</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202005</creationdate><title>Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat</title><author>Singh, Amit Kumar ; Singh, Nidhi ; Kumar, Sundeep ; Kumari, Jyoti ; Singh, Rakesh ; Gaba, Sonam ; Yadav, Mahesh C. ; Grover, Monendra ; Chaurasia, Shiksha ; Kumar, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-1ed2fe45893c872ca1ffdfe4a500ac8ec21d77e1661b6483e1a29464bee664a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brachypodium - genetics</topic><topic>Computer Simulation</topic><topic>Domestication</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Genetic Loci</topic><topic>Genetic Variation</topic><topic>Genome, Plant</topic><topic>MicroRNAs - chemistry</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Nucleic Acid Conformation</topic><topic>Oryza - genetics</topic><topic>Polycistronic miRNA</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Precursors - chemistry</topic><topic>RNA-Seq</topic><topic>Transcriptome</topic><topic>Triticum - genetics</topic><topic>Wheat genome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Singh, Nidhi</creatorcontrib><creatorcontrib>Kumar, Sundeep</creatorcontrib><creatorcontrib>Kumari, Jyoti</creatorcontrib><creatorcontrib>Singh, Rakesh</creatorcontrib><creatorcontrib>Gaba, Sonam</creatorcontrib><creatorcontrib>Yadav, Mahesh C.</creatorcontrib><creatorcontrib>Grover, Monendra</creatorcontrib><creatorcontrib>Chaurasia, Shiksha</creatorcontrib><creatorcontrib>Kumar, Rajesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Amit Kumar</au><au>Singh, Nidhi</au><au>Kumar, Sundeep</au><au>Kumari, Jyoti</au><au>Singh, Rakesh</au><au>Gaba, Sonam</au><au>Yadav, Mahesh C.</au><au>Grover, Monendra</au><au>Chaurasia, Shiksha</au><au>Kumar, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2020-05</date><risdate>2020</risdate><volume>112</volume><issue>3</issue><spage>2334</spage><epage>2348</epage><pages>2334-2348</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future.
•Polycitrsonic microRNA (miRNA) loci exist in wheat and these are broadly conserved across the ancestral wheat species.•Expression of 11 polycistronic miRNA loci were validated using previously assembled transcriptomes, deep small RNA sequencing (sRNA-seq) data sets and reverse transcription-polymerase chain reaction (RT-PCR).•miR395 family polycistrons were evolved by duplication and subsequent divergence of an ancestral basic polycitronic unit containing two genes.•Massive loss of nucleotide diversity at majority of the A sub-genome polycistronic miRNA loci during domestication. However, a few polycistronic loci were highly conserved across domesticated and wild wheat.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31926215</pmid><doi>10.1016/j.ygeno.2020.01.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-7543 |
ispartof | Genomics (San Diego, Calif.), 2020-05, Vol.112 (3), p.2334-2348 |
issn | 0888-7543 1089-8646 |
language | eng |
recordid | cdi_proquest_miscellaneous_2336255638 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Brachypodium - genetics Computer Simulation Domestication Evolution Evolution, Molecular Genetic Loci Genetic Variation Genome, Plant MicroRNAs - chemistry MicroRNAs - genetics MicroRNAs - metabolism miRNA Nucleic Acid Conformation Oryza - genetics Polycistronic miRNA Reverse Transcriptase Polymerase Chain Reaction RNA Precursors - chemistry RNA-Seq Transcriptome Triticum - genetics Wheat genome |
title | Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20evolutionary%20analysis%20of%20polycistronic%20miRNA%20clusters%20in%20domesticated%20and%20wild%20wheat&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Singh,%20Amit%20Kumar&rft.date=2020-05&rft.volume=112&rft.issue=3&rft.spage=2334&rft.epage=2348&rft.pages=2334-2348&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2020.01.005&rft_dat=%3Cproquest_cross%3E2336255638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336255638&rft_id=info:pmid/31926215&rft_els_id=S088875431930730X&rfr_iscdi=true |