Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat

MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 2020-05, Vol.112 (3), p.2334-2348
Hauptverfasser: Singh, Amit Kumar, Singh, Nidhi, Kumar, Sundeep, Kumari, Jyoti, Singh, Rakesh, Gaba, Sonam, Yadav, Mahesh C., Grover, Monendra, Chaurasia, Shiksha, Kumar, Rajesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2348
container_issue 3
container_start_page 2334
container_title Genomics (San Diego, Calif.)
container_volume 112
creator Singh, Amit Kumar
Singh, Nidhi
Kumar, Sundeep
Kumari, Jyoti
Singh, Rakesh
Gaba, Sonam
Yadav, Mahesh C.
Grover, Monendra
Chaurasia, Shiksha
Kumar, Rajesh
description MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future. •Polycitrsonic microRNA (miRNA) loci exist in wheat and these are broadly conserved across the ancestral wheat species.•Expression of 11 polycistronic miRNA loci were validated using previously assembled transcriptomes, deep small RNA sequencing (sRNA-seq) data sets and reverse transcription-polymerase chain reaction (RT-PCR).•miR395 family polycistrons were evolved by duplication and subsequent divergence of an ancestral basic polycitronic unit containing two genes.•Massive loss of nucleotide diversity at majority of the A sub-genome polycistronic miRNA loci during domestication. However, a few polycistronic loci were highly conserved across domesticated and wild wheat.
doi_str_mv 10.1016/j.ygeno.2020.01.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2336255638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088875431930730X</els_id><sourcerecordid>2336255638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-1ed2fe45893c872ca1ffdfe4a500ac8ec21d77e1661b6483e1a29464bee664a83</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoVhxZql_QUFBh93sUt9WJEPOwTFPgoELVC0Z0GR6FSBbWWS3SH_fnLT7dgLCRIvX5IPIVcUKgpUXu-r4w6HUDFgUAGtAOoPZEFBNaWSQn4kC1BKlata8HPyOaU9ADRcsU_knNOGSUbrBdndOhxG33prRh-GwgyuwJfQTXNl4jE3THdMPhWhLQ6hO1qfxhgGb4veP9ytC9tNacSYCj8ULvSYxtkK3avTH9_l8IxmvCBnrekSXr7lJXn68f3x5le5uf95e7PelFaAGEuKjrUoatVwq1bMGtq2LjdMDWCsQsuoW62QSkm3UiiO1LBGSLFFlFIYxZfk68n3EMPvKV-je58sdp0ZMExJM84lq2vJZyk_SW0MKUVs9SH6Pv-sKeiZsN7rV8J6JqyB6kw4T315WzBte3T_Z_4hzYJvJwHmN188Rp2sx8Gi8xHtqF3w7y74C59Jj9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336255638</pqid></control><display><type>article</type><title>Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Singh, Amit Kumar ; Singh, Nidhi ; Kumar, Sundeep ; Kumari, Jyoti ; Singh, Rakesh ; Gaba, Sonam ; Yadav, Mahesh C. ; Grover, Monendra ; Chaurasia, Shiksha ; Kumar, Rajesh</creator><creatorcontrib>Singh, Amit Kumar ; Singh, Nidhi ; Kumar, Sundeep ; Kumari, Jyoti ; Singh, Rakesh ; Gaba, Sonam ; Yadav, Mahesh C. ; Grover, Monendra ; Chaurasia, Shiksha ; Kumar, Rajesh</creatorcontrib><description>MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future. •Polycitrsonic microRNA (miRNA) loci exist in wheat and these are broadly conserved across the ancestral wheat species.•Expression of 11 polycistronic miRNA loci were validated using previously assembled transcriptomes, deep small RNA sequencing (sRNA-seq) data sets and reverse transcription-polymerase chain reaction (RT-PCR).•miR395 family polycistrons were evolved by duplication and subsequent divergence of an ancestral basic polycitronic unit containing two genes.•Massive loss of nucleotide diversity at majority of the A sub-genome polycistronic miRNA loci during domestication. However, a few polycistronic loci were highly conserved across domesticated and wild wheat.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2020.01.005</identifier><identifier>PMID: 31926215</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brachypodium - genetics ; Computer Simulation ; Domestication ; Evolution ; Evolution, Molecular ; Genetic Loci ; Genetic Variation ; Genome, Plant ; MicroRNAs - chemistry ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Nucleic Acid Conformation ; Oryza - genetics ; Polycistronic miRNA ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Precursors - chemistry ; RNA-Seq ; Transcriptome ; Triticum - genetics ; Wheat genome</subject><ispartof>Genomics (San Diego, Calif.), 2020-05, Vol.112 (3), p.2334-2348</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-1ed2fe45893c872ca1ffdfe4a500ac8ec21d77e1661b6483e1a29464bee664a83</citedby><cites>FETCH-LOGICAL-c404t-1ed2fe45893c872ca1ffdfe4a500ac8ec21d77e1661b6483e1a29464bee664a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ygeno.2020.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31926215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Singh, Nidhi</creatorcontrib><creatorcontrib>Kumar, Sundeep</creatorcontrib><creatorcontrib>Kumari, Jyoti</creatorcontrib><creatorcontrib>Singh, Rakesh</creatorcontrib><creatorcontrib>Gaba, Sonam</creatorcontrib><creatorcontrib>Yadav, Mahesh C.</creatorcontrib><creatorcontrib>Grover, Monendra</creatorcontrib><creatorcontrib>Chaurasia, Shiksha</creatorcontrib><creatorcontrib>Kumar, Rajesh</creatorcontrib><title>Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future. •Polycitrsonic microRNA (miRNA) loci exist in wheat and these are broadly conserved across the ancestral wheat species.•Expression of 11 polycistronic miRNA loci were validated using previously assembled transcriptomes, deep small RNA sequencing (sRNA-seq) data sets and reverse transcription-polymerase chain reaction (RT-PCR).•miR395 family polycistrons were evolved by duplication and subsequent divergence of an ancestral basic polycitronic unit containing two genes.•Massive loss of nucleotide diversity at majority of the A sub-genome polycistronic miRNA loci during domestication. However, a few polycistronic loci were highly conserved across domesticated and wild wheat.</description><subject>Brachypodium - genetics</subject><subject>Computer Simulation</subject><subject>Domestication</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Genetic Loci</subject><subject>Genetic Variation</subject><subject>Genome, Plant</subject><subject>MicroRNAs - chemistry</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Nucleic Acid Conformation</subject><subject>Oryza - genetics</subject><subject>Polycistronic miRNA</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Precursors - chemistry</subject><subject>RNA-Seq</subject><subject>Transcriptome</subject><subject>Triticum - genetics</subject><subject>Wheat genome</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v2zAMhoVhxZql_QUFBh93sUt9WJEPOwTFPgoELVC0Z0GR6FSBbWWS3SH_fnLT7dgLCRIvX5IPIVcUKgpUXu-r4w6HUDFgUAGtAOoPZEFBNaWSQn4kC1BKlata8HPyOaU9ADRcsU_knNOGSUbrBdndOhxG33prRh-GwgyuwJfQTXNl4jE3THdMPhWhLQ6hO1qfxhgGb4veP9ytC9tNacSYCj8ULvSYxtkK3avTH9_l8IxmvCBnrekSXr7lJXn68f3x5le5uf95e7PelFaAGEuKjrUoatVwq1bMGtq2LjdMDWCsQsuoW62QSkm3UiiO1LBGSLFFlFIYxZfk68n3EMPvKV-je58sdp0ZMExJM84lq2vJZyk_SW0MKUVs9SH6Pv-sKeiZsN7rV8J6JqyB6kw4T315WzBte3T_Z_4hzYJvJwHmN188Rp2sx8Gi8xHtqF3w7y74C59Jj9g</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Singh, Amit Kumar</creator><creator>Singh, Nidhi</creator><creator>Kumar, Sundeep</creator><creator>Kumari, Jyoti</creator><creator>Singh, Rakesh</creator><creator>Gaba, Sonam</creator><creator>Yadav, Mahesh C.</creator><creator>Grover, Monendra</creator><creator>Chaurasia, Shiksha</creator><creator>Kumar, Rajesh</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202005</creationdate><title>Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat</title><author>Singh, Amit Kumar ; Singh, Nidhi ; Kumar, Sundeep ; Kumari, Jyoti ; Singh, Rakesh ; Gaba, Sonam ; Yadav, Mahesh C. ; Grover, Monendra ; Chaurasia, Shiksha ; Kumar, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-1ed2fe45893c872ca1ffdfe4a500ac8ec21d77e1661b6483e1a29464bee664a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brachypodium - genetics</topic><topic>Computer Simulation</topic><topic>Domestication</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Genetic Loci</topic><topic>Genetic Variation</topic><topic>Genome, Plant</topic><topic>MicroRNAs - chemistry</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Nucleic Acid Conformation</topic><topic>Oryza - genetics</topic><topic>Polycistronic miRNA</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Precursors - chemistry</topic><topic>RNA-Seq</topic><topic>Transcriptome</topic><topic>Triticum - genetics</topic><topic>Wheat genome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Amit Kumar</creatorcontrib><creatorcontrib>Singh, Nidhi</creatorcontrib><creatorcontrib>Kumar, Sundeep</creatorcontrib><creatorcontrib>Kumari, Jyoti</creatorcontrib><creatorcontrib>Singh, Rakesh</creatorcontrib><creatorcontrib>Gaba, Sonam</creatorcontrib><creatorcontrib>Yadav, Mahesh C.</creatorcontrib><creatorcontrib>Grover, Monendra</creatorcontrib><creatorcontrib>Chaurasia, Shiksha</creatorcontrib><creatorcontrib>Kumar, Rajesh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Amit Kumar</au><au>Singh, Nidhi</au><au>Kumar, Sundeep</au><au>Kumari, Jyoti</au><au>Singh, Rakesh</au><au>Gaba, Sonam</au><au>Yadav, Mahesh C.</au><au>Grover, Monendra</au><au>Chaurasia, Shiksha</au><au>Kumar, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2020-05</date><risdate>2020</risdate><volume>112</volume><issue>3</issue><spage>2334</spage><epage>2348</epage><pages>2334-2348</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future. •Polycitrsonic microRNA (miRNA) loci exist in wheat and these are broadly conserved across the ancestral wheat species.•Expression of 11 polycistronic miRNA loci were validated using previously assembled transcriptomes, deep small RNA sequencing (sRNA-seq) data sets and reverse transcription-polymerase chain reaction (RT-PCR).•miR395 family polycistrons were evolved by duplication and subsequent divergence of an ancestral basic polycitronic unit containing two genes.•Massive loss of nucleotide diversity at majority of the A sub-genome polycistronic miRNA loci during domestication. However, a few polycistronic loci were highly conserved across domesticated and wild wheat.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31926215</pmid><doi>10.1016/j.ygeno.2020.01.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-7543
ispartof Genomics (San Diego, Calif.), 2020-05, Vol.112 (3), p.2334-2348
issn 0888-7543
1089-8646
language eng
recordid cdi_proquest_miscellaneous_2336255638
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Brachypodium - genetics
Computer Simulation
Domestication
Evolution
Evolution, Molecular
Genetic Loci
Genetic Variation
Genome, Plant
MicroRNAs - chemistry
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Nucleic Acid Conformation
Oryza - genetics
Polycistronic miRNA
Reverse Transcriptase Polymerase Chain Reaction
RNA Precursors - chemistry
RNA-Seq
Transcriptome
Triticum - genetics
Wheat genome
title Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20evolutionary%20analysis%20of%20polycistronic%20miRNA%20clusters%20in%20domesticated%20and%20wild%20wheat&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Singh,%20Amit%20Kumar&rft.date=2020-05&rft.volume=112&rft.issue=3&rft.spage=2334&rft.epage=2348&rft.pages=2334-2348&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2020.01.005&rft_dat=%3Cproquest_cross%3E2336255638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336255638&rft_id=info:pmid/31926215&rft_els_id=S088875431930730X&rfr_iscdi=true