Treadmill exercise improves neurological function by inhibiting autophagy and the binding of HMGB1 to Beclin1 in MCAO juvenile rats
Treadmill exercise is a beneficial treatment following childhood stroke. Thus, studies focusing on the neuroprotective mechanism of exercise training during postischemic treatment in children with ischemic stroke are urgently needed. We evaluated the effects of treadmill exercise on autophagy after...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 2020-02, Vol.243, p.117279-117279, Article 117279 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117279 |
---|---|
container_issue | |
container_start_page | 117279 |
container_title | Life sciences (1973) |
container_volume | 243 |
creator | Pan, Guoyuan Jin, Lingqin Shen, Weimin Zhang, Jieqiong Pan, Juanjuan Cheng, Jingyan Xie, Qingfeng Hu, Quan Wu, Shamin Zhang, Hongmei Chen, Xiang |
description | Treadmill exercise is a beneficial treatment following childhood stroke. Thus, studies focusing on the neuroprotective mechanism of exercise training during postischemic treatment in children with ischemic stroke are urgently needed. We evaluated the effects of treadmill exercise on autophagy after cerebral ischemia in young rats.
Rats (23–25 days old) underwent cerebral ischemia-reperfusion (CI/R) surgery. The experimental animals were divided into 5 groups, and some groups received either treadmill exercise, a rapamycin (RAPA) injection or combination therapy for 3 or 7 days. We performed a series of experimental tests including neurological scoring, hematoxylin-eosin staining (H&E), Nissl staining, triphenyl tetrazolium chloride (TTC) staining, Western blot analysis (WB), immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), transmission electron microscopy (TEM) and Terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) fluorescence.
The experimental data indicated that treadmill exercise inhibited autophagy in the ischemic penumbra, inhibited high mobility group box 1 (HMGB1) translocation and binding to Beclin1, reduced apoptosis, reduced infarct volumes, and aided in functional recovery. However, RAPA promoted the opposite effects of treadmill exercise.
We found that treadmill exercise improves the neurological deficits induced by CI/R by inhibiting autophagy and HMGB1 binding to Beclin1. |
doi_str_mv | 10.1016/j.lfs.2020.117279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_2336254940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320520300266</els_id><sourcerecordid>2336254940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-3b9ba07d4e5e1b4bcf6b49d58bdd493638a6ef24581e05510a1c5cce740df8f03</originalsourceid><addsrcrecordid>eNqNkctu1DAYhSMEokPhAdggS2yQUAZfchWrNoIWqVU3ZW358mfGUcYebGfKrPvidZShCxaIlW35O798_GXZe4LXBJPqy7Ae-7CmmKYzqWndvshWpKnbHFeMvMxWGNMiZxSXZ9mbEAaMcVnW7HV2xkhLK1qUq-zx3oPQOzOOCH6DVyYAMru9dwcIyMLk3eg2RokR9ZNV0TiL5BEZuzXSRGM3SEzR7bdic0TCahS3gKSxer5xPbq-vbokKDp0CWo0lqQguu0u7tAwHcCaEZAXMbzNXvViDPDutJ5nP79_u--u85u7qx_dxU2uWENizmQrBa51ASUQWUjVV7JoddlIrYuWVawRFfSpVUMgFSVYEFUqBXWBdd_0mJ1nn5a5qd6vCULkOxMUjKOw4KbAKWMVLYu2mNGPf6GDm7xNr0tURdsqza8TRRZKeReCh57vvdkJf-QE89kQH3gyxGdDfDGUMh9Okye5A_2c-KMkAc0CPIB0fVAGrIJnbHZIaNtWNO0K1pkoZimdm2xM0c__H03014WG9OcHA56fEtp4UJFrZ_7R4wndN8IX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362965517</pqid></control><display><type>article</type><title>Treadmill exercise improves neurological function by inhibiting autophagy and the binding of HMGB1 to Beclin1 in MCAO juvenile rats</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Pan, Guoyuan ; Jin, Lingqin ; Shen, Weimin ; Zhang, Jieqiong ; Pan, Juanjuan ; Cheng, Jingyan ; Xie, Qingfeng ; Hu, Quan ; Wu, Shamin ; Zhang, Hongmei ; Chen, Xiang</creator><creatorcontrib>Pan, Guoyuan ; Jin, Lingqin ; Shen, Weimin ; Zhang, Jieqiong ; Pan, Juanjuan ; Cheng, Jingyan ; Xie, Qingfeng ; Hu, Quan ; Wu, Shamin ; Zhang, Hongmei ; Chen, Xiang</creatorcontrib><description>Treadmill exercise is a beneficial treatment following childhood stroke. Thus, studies focusing on the neuroprotective mechanism of exercise training during postischemic treatment in children with ischemic stroke are urgently needed. We evaluated the effects of treadmill exercise on autophagy after cerebral ischemia in young rats.
Rats (23–25 days old) underwent cerebral ischemia-reperfusion (CI/R) surgery. The experimental animals were divided into 5 groups, and some groups received either treadmill exercise, a rapamycin (RAPA) injection or combination therapy for 3 or 7 days. We performed a series of experimental tests including neurological scoring, hematoxylin-eosin staining (H&E), Nissl staining, triphenyl tetrazolium chloride (TTC) staining, Western blot analysis (WB), immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), transmission electron microscopy (TEM) and Terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) fluorescence.
The experimental data indicated that treadmill exercise inhibited autophagy in the ischemic penumbra, inhibited high mobility group box 1 (HMGB1) translocation and binding to Beclin1, reduced apoptosis, reduced infarct volumes, and aided in functional recovery. However, RAPA promoted the opposite effects of treadmill exercise.
We found that treadmill exercise improves the neurological deficits induced by CI/R by inhibiting autophagy and HMGB1 binding to Beclin1.</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2020.117279</identifier><identifier>PMID: 31926245</identifier><language>eng</language><publisher>OXFORD: Elsevier Inc</publisher><subject>Animals ; Apoptosis ; Autophagy ; Beclin-1 - metabolism ; Binding ; Brain - metabolism ; Brain - pathology ; Brain - physiopathology ; Brain Ischemia - metabolism ; Childhood stroke ; Children ; Digoxigenin ; DNA nucleotidylexotransferase ; Enzyme-linked immunosorbent assay ; Fitness equipment ; Fluorescence ; HMGB1 ; HMGB1 protein ; HMGB1 Protein - metabolism ; Immunofluorescence ; Ischemia ; Life Sciences & Biomedicine ; Male ; Medicine, Research & Experimental ; Neurological diseases ; Neuroprotection ; Neuroprotective Agents ; Phagocytosis ; Pharmacology & Pharmacy ; Physical Conditioning, Animal ; Physical training ; Protein Binding ; Rapamycin ; Rats ; Rats, Sprague-Dawley ; Recovery of function ; Reperfusion ; Reperfusion Injury - metabolism ; Research & Experimental Medicine ; Rodents ; Science & Technology ; Staining ; Stroke ; Surgery ; Translocation ; Transmission electron microscopy ; Treadmill exercise ; Treadmills ; Triphenyltetrazolium chloride</subject><ispartof>Life sciences (1973), 2020-02, Vol.243, p.117279-117279, Article 117279</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Feb 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000512996200043</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c381t-3b9ba07d4e5e1b4bcf6b49d58bdd493638a6ef24581e05510a1c5cce740df8f03</citedby><cites>FETCH-LOGICAL-c381t-3b9ba07d4e5e1b4bcf6b49d58bdd493638a6ef24581e05510a1c5cce740df8f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.lfs.2020.117279$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,28255,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31926245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Guoyuan</creatorcontrib><creatorcontrib>Jin, Lingqin</creatorcontrib><creatorcontrib>Shen, Weimin</creatorcontrib><creatorcontrib>Zhang, Jieqiong</creatorcontrib><creatorcontrib>Pan, Juanjuan</creatorcontrib><creatorcontrib>Cheng, Jingyan</creatorcontrib><creatorcontrib>Xie, Qingfeng</creatorcontrib><creatorcontrib>Hu, Quan</creatorcontrib><creatorcontrib>Wu, Shamin</creatorcontrib><creatorcontrib>Zhang, Hongmei</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><title>Treadmill exercise improves neurological function by inhibiting autophagy and the binding of HMGB1 to Beclin1 in MCAO juvenile rats</title><title>Life sciences (1973)</title><addtitle>LIFE SCI</addtitle><addtitle>Life Sci</addtitle><description>Treadmill exercise is a beneficial treatment following childhood stroke. Thus, studies focusing on the neuroprotective mechanism of exercise training during postischemic treatment in children with ischemic stroke are urgently needed. We evaluated the effects of treadmill exercise on autophagy after cerebral ischemia in young rats.
Rats (23–25 days old) underwent cerebral ischemia-reperfusion (CI/R) surgery. The experimental animals were divided into 5 groups, and some groups received either treadmill exercise, a rapamycin (RAPA) injection or combination therapy for 3 or 7 days. We performed a series of experimental tests including neurological scoring, hematoxylin-eosin staining (H&E), Nissl staining, triphenyl tetrazolium chloride (TTC) staining, Western blot analysis (WB), immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), transmission electron microscopy (TEM) and Terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) fluorescence.
The experimental data indicated that treadmill exercise inhibited autophagy in the ischemic penumbra, inhibited high mobility group box 1 (HMGB1) translocation and binding to Beclin1, reduced apoptosis, reduced infarct volumes, and aided in functional recovery. However, RAPA promoted the opposite effects of treadmill exercise.
We found that treadmill exercise improves the neurological deficits induced by CI/R by inhibiting autophagy and HMGB1 binding to Beclin1.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Beclin-1 - metabolism</subject><subject>Binding</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Brain Ischemia - metabolism</subject><subject>Childhood stroke</subject><subject>Children</subject><subject>Digoxigenin</subject><subject>DNA nucleotidylexotransferase</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Fitness equipment</subject><subject>Fluorescence</subject><subject>HMGB1</subject><subject>HMGB1 protein</subject><subject>HMGB1 Protein - metabolism</subject><subject>Immunofluorescence</subject><subject>Ischemia</subject><subject>Life Sciences & Biomedicine</subject><subject>Male</subject><subject>Medicine, Research & Experimental</subject><subject>Neurological diseases</subject><subject>Neuroprotection</subject><subject>Neuroprotective Agents</subject><subject>Phagocytosis</subject><subject>Pharmacology & Pharmacy</subject><subject>Physical Conditioning, Animal</subject><subject>Physical training</subject><subject>Protein Binding</subject><subject>Rapamycin</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recovery of function</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - metabolism</subject><subject>Research & Experimental Medicine</subject><subject>Rodents</subject><subject>Science & Technology</subject><subject>Staining</subject><subject>Stroke</subject><subject>Surgery</subject><subject>Translocation</subject><subject>Transmission electron microscopy</subject><subject>Treadmill exercise</subject><subject>Treadmills</subject><subject>Triphenyltetrazolium chloride</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkctu1DAYhSMEokPhAdggS2yQUAZfchWrNoIWqVU3ZW358mfGUcYebGfKrPvidZShCxaIlW35O798_GXZe4LXBJPqy7Ae-7CmmKYzqWndvshWpKnbHFeMvMxWGNMiZxSXZ9mbEAaMcVnW7HV2xkhLK1qUq-zx3oPQOzOOCH6DVyYAMru9dwcIyMLk3eg2RokR9ZNV0TiL5BEZuzXSRGM3SEzR7bdic0TCahS3gKSxer5xPbq-vbokKDp0CWo0lqQguu0u7tAwHcCaEZAXMbzNXvViDPDutJ5nP79_u--u85u7qx_dxU2uWENizmQrBa51ASUQWUjVV7JoddlIrYuWVawRFfSpVUMgFSVYEFUqBXWBdd_0mJ1nn5a5qd6vCULkOxMUjKOw4KbAKWMVLYu2mNGPf6GDm7xNr0tURdsqza8TRRZKeReCh57vvdkJf-QE89kQH3gyxGdDfDGUMh9Okye5A_2c-KMkAc0CPIB0fVAGrIJnbHZIaNtWNO0K1pkoZimdm2xM0c__H03014WG9OcHA56fEtp4UJFrZ_7R4wndN8IX</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Pan, Guoyuan</creator><creator>Jin, Lingqin</creator><creator>Shen, Weimin</creator><creator>Zhang, Jieqiong</creator><creator>Pan, Juanjuan</creator><creator>Cheng, Jingyan</creator><creator>Xie, Qingfeng</creator><creator>Hu, Quan</creator><creator>Wu, Shamin</creator><creator>Zhang, Hongmei</creator><creator>Chen, Xiang</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200215</creationdate><title>Treadmill exercise improves neurological function by inhibiting autophagy and the binding of HMGB1 to Beclin1 in MCAO juvenile rats</title><author>Pan, Guoyuan ; Jin, Lingqin ; Shen, Weimin ; Zhang, Jieqiong ; Pan, Juanjuan ; Cheng, Jingyan ; Xie, Qingfeng ; Hu, Quan ; Wu, Shamin ; Zhang, Hongmei ; Chen, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-3b9ba07d4e5e1b4bcf6b49d58bdd493638a6ef24581e05510a1c5cce740df8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Beclin-1 - metabolism</topic><topic>Binding</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Brain Ischemia - metabolism</topic><topic>Childhood stroke</topic><topic>Children</topic><topic>Digoxigenin</topic><topic>DNA nucleotidylexotransferase</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Fitness equipment</topic><topic>Fluorescence</topic><topic>HMGB1</topic><topic>HMGB1 protein</topic><topic>HMGB1 Protein - metabolism</topic><topic>Immunofluorescence</topic><topic>Ischemia</topic><topic>Life Sciences & Biomedicine</topic><topic>Male</topic><topic>Medicine, Research & Experimental</topic><topic>Neurological diseases</topic><topic>Neuroprotection</topic><topic>Neuroprotective Agents</topic><topic>Phagocytosis</topic><topic>Pharmacology & Pharmacy</topic><topic>Physical Conditioning, Animal</topic><topic>Physical training</topic><topic>Protein Binding</topic><topic>Rapamycin</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recovery of function</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - metabolism</topic><topic>Research & Experimental Medicine</topic><topic>Rodents</topic><topic>Science & Technology</topic><topic>Staining</topic><topic>Stroke</topic><topic>Surgery</topic><topic>Translocation</topic><topic>Transmission electron microscopy</topic><topic>Treadmill exercise</topic><topic>Treadmills</topic><topic>Triphenyltetrazolium chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Guoyuan</creatorcontrib><creatorcontrib>Jin, Lingqin</creatorcontrib><creatorcontrib>Shen, Weimin</creatorcontrib><creatorcontrib>Zhang, Jieqiong</creatorcontrib><creatorcontrib>Pan, Juanjuan</creatorcontrib><creatorcontrib>Cheng, Jingyan</creatorcontrib><creatorcontrib>Xie, Qingfeng</creatorcontrib><creatorcontrib>Hu, Quan</creatorcontrib><creatorcontrib>Wu, Shamin</creatorcontrib><creatorcontrib>Zhang, Hongmei</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Guoyuan</au><au>Jin, Lingqin</au><au>Shen, Weimin</au><au>Zhang, Jieqiong</au><au>Pan, Juanjuan</au><au>Cheng, Jingyan</au><au>Xie, Qingfeng</au><au>Hu, Quan</au><au>Wu, Shamin</au><au>Zhang, Hongmei</au><au>Chen, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Treadmill exercise improves neurological function by inhibiting autophagy and the binding of HMGB1 to Beclin1 in MCAO juvenile rats</atitle><jtitle>Life sciences (1973)</jtitle><stitle>LIFE SCI</stitle><addtitle>Life Sci</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>243</volume><spage>117279</spage><epage>117279</epage><pages>117279-117279</pages><artnum>117279</artnum><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>Treadmill exercise is a beneficial treatment following childhood stroke. Thus, studies focusing on the neuroprotective mechanism of exercise training during postischemic treatment in children with ischemic stroke are urgently needed. We evaluated the effects of treadmill exercise on autophagy after cerebral ischemia in young rats.
Rats (23–25 days old) underwent cerebral ischemia-reperfusion (CI/R) surgery. The experimental animals were divided into 5 groups, and some groups received either treadmill exercise, a rapamycin (RAPA) injection or combination therapy for 3 or 7 days. We performed a series of experimental tests including neurological scoring, hematoxylin-eosin staining (H&E), Nissl staining, triphenyl tetrazolium chloride (TTC) staining, Western blot analysis (WB), immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), transmission electron microscopy (TEM) and Terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) fluorescence.
The experimental data indicated that treadmill exercise inhibited autophagy in the ischemic penumbra, inhibited high mobility group box 1 (HMGB1) translocation and binding to Beclin1, reduced apoptosis, reduced infarct volumes, and aided in functional recovery. However, RAPA promoted the opposite effects of treadmill exercise.
We found that treadmill exercise improves the neurological deficits induced by CI/R by inhibiting autophagy and HMGB1 binding to Beclin1.</abstract><cop>OXFORD</cop><pub>Elsevier Inc</pub><pmid>31926245</pmid><doi>10.1016/j.lfs.2020.117279</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3205 |
ispartof | Life sciences (1973), 2020-02, Vol.243, p.117279-117279, Article 117279 |
issn | 0024-3205 1879-0631 |
language | eng |
recordid | cdi_proquest_miscellaneous_2336254940 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Animals Apoptosis Autophagy Beclin-1 - metabolism Binding Brain - metabolism Brain - pathology Brain - physiopathology Brain Ischemia - metabolism Childhood stroke Children Digoxigenin DNA nucleotidylexotransferase Enzyme-linked immunosorbent assay Fitness equipment Fluorescence HMGB1 HMGB1 protein HMGB1 Protein - metabolism Immunofluorescence Ischemia Life Sciences & Biomedicine Male Medicine, Research & Experimental Neurological diseases Neuroprotection Neuroprotective Agents Phagocytosis Pharmacology & Pharmacy Physical Conditioning, Animal Physical training Protein Binding Rapamycin Rats Rats, Sprague-Dawley Recovery of function Reperfusion Reperfusion Injury - metabolism Research & Experimental Medicine Rodents Science & Technology Staining Stroke Surgery Translocation Transmission electron microscopy Treadmill exercise Treadmills Triphenyltetrazolium chloride |
title | Treadmill exercise improves neurological function by inhibiting autophagy and the binding of HMGB1 to Beclin1 in MCAO juvenile rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Treadmill%20exercise%20improves%20neurological%20function%20by%20inhibiting%20autophagy%20and%20the%20binding%20of%20HMGB1%20to%20Beclin1%20in%20MCAO%20juvenile%20rats&rft.jtitle=Life%20sciences%20(1973)&rft.au=Pan,%20Guoyuan&rft.date=2020-02-15&rft.volume=243&rft.spage=117279&rft.epage=117279&rft.pages=117279-117279&rft.artnum=117279&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2020.117279&rft_dat=%3Cproquest_elsev%3E2336254940%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362965517&rft_id=info:pmid/31926245&rft_els_id=S0024320520300266&rfr_iscdi=true |