Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors
Solid tumors, especially desmoplastic tumors, are characterized by a dense fibrotic stroma composed of abundant cancer-associated fibroblasts and excessive extracellular matrix. These physical barriers seriously compromise drug delivery to tumor cells, leading to suboptimal treatment efficacy and re...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2020-02, Vol.232, p.119745-119745, Article 119745 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119745 |
---|---|
container_issue | |
container_start_page | 119745 |
container_title | Biomaterials |
container_volume | 232 |
creator | Han, Xuexiang Xu, Ying Geranpayehvaghei, Marzieh Anderson, Gregory J. Li, Yiye Nie, Guangjun |
description | Solid tumors, especially desmoplastic tumors, are characterized by a dense fibrotic stroma composed of abundant cancer-associated fibroblasts and excessive extracellular matrix. These physical barriers seriously compromise drug delivery to tumor cells, leading to suboptimal treatment efficacy and resistance to current tumor-centric therapeutics. The need to overcome these problems has driven extensive investigations and sparked the flourish of anti-stromal therapy, particularly in the field of nanomedicines. In this paper, we firstly review the major components of the tumor stroma and discuss their impact on drug delivery. Then, according to the different stromal targets, we summarize the current status of anti-stromal therapy and highlight recent advances in anti-stromal nanomedicines. We further examine the potential of nano-enabled anti-stromal therapy to enhance the anti-tumor efficacy of other therapeutic modalities, including chemotherapy, immunotherapy, phototherapy and radiotherapy. Finally, the potential concerns and future developments of anti-stromal nanomedicines are discussed. |
doi_str_mv | 10.1016/j.biomaterials.2019.119745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2336244614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961219308634</els_id><sourcerecordid>2336244614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-ab50f4388ace0c85b43e202203ae0b2440b19a7b8c50c6b8525feca0b92023053</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWqt_QRZPXrZOks026020fmDBi55Dks7WlN1NTVKh_95IVTx6GgaemXfmIeScwoQCrS9XE-N8rxMGp7s4YUCbCaXNtBJ7ZETlVJaiAbFPRkArVjY1ZUfkOMYV5B4qdkiOOG2oZEyOyNOsx7B0w7IY9OB7XDjrBoxF60Ohh-TKmELO6or0hkGvt4VeajfEVCww9n7d6ZicLdKm9yGekIM2H4Sn33VMXu9mLzcP5fz5_vHmel5aLiGV2ghoKy6ltghWClNxZMAYcI1gWFWBoY2eGmkF2NpIwUSLVoNpMsVB8DG52O1dB_--wZhU76LFrtMD-k1UjPM6r6lpldGrHWqDjzFgq9bB9TpsFQX1JVOt1F-Z6kum2snMw2ffORuTzfyO_tjLwO0OwPzth8OgonU42GwxoE1q4d1_cj4BhUONUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336244614</pqid></control><display><type>article</type><title>Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Han, Xuexiang ; Xu, Ying ; Geranpayehvaghei, Marzieh ; Anderson, Gregory J. ; Li, Yiye ; Nie, Guangjun</creator><creatorcontrib>Han, Xuexiang ; Xu, Ying ; Geranpayehvaghei, Marzieh ; Anderson, Gregory J. ; Li, Yiye ; Nie, Guangjun</creatorcontrib><description>Solid tumors, especially desmoplastic tumors, are characterized by a dense fibrotic stroma composed of abundant cancer-associated fibroblasts and excessive extracellular matrix. These physical barriers seriously compromise drug delivery to tumor cells, leading to suboptimal treatment efficacy and resistance to current tumor-centric therapeutics. The need to overcome these problems has driven extensive investigations and sparked the flourish of anti-stromal therapy, particularly in the field of nanomedicines. In this paper, we firstly review the major components of the tumor stroma and discuss their impact on drug delivery. Then, according to the different stromal targets, we summarize the current status of anti-stromal therapy and highlight recent advances in anti-stromal nanomedicines. We further examine the potential of nano-enabled anti-stromal therapy to enhance the anti-tumor efficacy of other therapeutic modalities, including chemotherapy, immunotherapy, phototherapy and radiotherapy. Finally, the potential concerns and future developments of anti-stromal nanomedicines are discussed.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2019.119745</identifier><identifier>PMID: 31918228</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Anti-stromal therapy ; Antineoplastic Agents - therapeutic use ; Cancer-associated fibroblast ; Desmoplastic tumor ; Drug delivery ; Drug Delivery Systems ; Humans ; Immunotherapy ; Nanomedicine ; Neoplasms - drug therapy</subject><ispartof>Biomaterials, 2020-02, Vol.232, p.119745-119745, Article 119745</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-ab50f4388ace0c85b43e202203ae0b2440b19a7b8c50c6b8525feca0b92023053</citedby><cites>FETCH-LOGICAL-c380t-ab50f4388ace0c85b43e202203ae0b2440b19a7b8c50c6b8525feca0b92023053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2019.119745$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31918228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Xuexiang</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Geranpayehvaghei, Marzieh</creatorcontrib><creatorcontrib>Anderson, Gregory J.</creatorcontrib><creatorcontrib>Li, Yiye</creatorcontrib><creatorcontrib>Nie, Guangjun</creatorcontrib><title>Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Solid tumors, especially desmoplastic tumors, are characterized by a dense fibrotic stroma composed of abundant cancer-associated fibroblasts and excessive extracellular matrix. These physical barriers seriously compromise drug delivery to tumor cells, leading to suboptimal treatment efficacy and resistance to current tumor-centric therapeutics. The need to overcome these problems has driven extensive investigations and sparked the flourish of anti-stromal therapy, particularly in the field of nanomedicines. In this paper, we firstly review the major components of the tumor stroma and discuss their impact on drug delivery. Then, according to the different stromal targets, we summarize the current status of anti-stromal therapy and highlight recent advances in anti-stromal nanomedicines. We further examine the potential of nano-enabled anti-stromal therapy to enhance the anti-tumor efficacy of other therapeutic modalities, including chemotherapy, immunotherapy, phototherapy and radiotherapy. Finally, the potential concerns and future developments of anti-stromal nanomedicines are discussed.</description><subject>Anti-stromal therapy</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Cancer-associated fibroblast</subject><subject>Desmoplastic tumor</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Nanomedicine</subject><subject>Neoplasms - drug therapy</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LAzEQhoMoWqt_QRZPXrZOks026020fmDBi55Dks7WlN1NTVKh_95IVTx6GgaemXfmIeScwoQCrS9XE-N8rxMGp7s4YUCbCaXNtBJ7ZETlVJaiAbFPRkArVjY1ZUfkOMYV5B4qdkiOOG2oZEyOyNOsx7B0w7IY9OB7XDjrBoxF60Ohh-TKmELO6or0hkGvt4VeajfEVCww9n7d6ZicLdKm9yGekIM2H4Sn33VMXu9mLzcP5fz5_vHmel5aLiGV2ghoKy6ltghWClNxZMAYcI1gWFWBoY2eGmkF2NpIwUSLVoNpMsVB8DG52O1dB_--wZhU76LFrtMD-k1UjPM6r6lpldGrHWqDjzFgq9bB9TpsFQX1JVOt1F-Z6kum2snMw2ffORuTzfyO_tjLwO0OwPzth8OgonU42GwxoE1q4d1_cj4BhUONUA</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Han, Xuexiang</creator><creator>Xu, Ying</creator><creator>Geranpayehvaghei, Marzieh</creator><creator>Anderson, Gregory J.</creator><creator>Li, Yiye</creator><creator>Nie, Guangjun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202002</creationdate><title>Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors</title><author>Han, Xuexiang ; Xu, Ying ; Geranpayehvaghei, Marzieh ; Anderson, Gregory J. ; Li, Yiye ; Nie, Guangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-ab50f4388ace0c85b43e202203ae0b2440b19a7b8c50c6b8525feca0b92023053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-stromal therapy</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Cancer-associated fibroblast</topic><topic>Desmoplastic tumor</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Nanomedicine</topic><topic>Neoplasms - drug therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xuexiang</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Geranpayehvaghei, Marzieh</creatorcontrib><creatorcontrib>Anderson, Gregory J.</creatorcontrib><creatorcontrib>Li, Yiye</creatorcontrib><creatorcontrib>Nie, Guangjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xuexiang</au><au>Xu, Ying</au><au>Geranpayehvaghei, Marzieh</au><au>Anderson, Gregory J.</au><au>Li, Yiye</au><au>Nie, Guangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2020-02</date><risdate>2020</risdate><volume>232</volume><spage>119745</spage><epage>119745</epage><pages>119745-119745</pages><artnum>119745</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Solid tumors, especially desmoplastic tumors, are characterized by a dense fibrotic stroma composed of abundant cancer-associated fibroblasts and excessive extracellular matrix. These physical barriers seriously compromise drug delivery to tumor cells, leading to suboptimal treatment efficacy and resistance to current tumor-centric therapeutics. The need to overcome these problems has driven extensive investigations and sparked the flourish of anti-stromal therapy, particularly in the field of nanomedicines. In this paper, we firstly review the major components of the tumor stroma and discuss their impact on drug delivery. Then, according to the different stromal targets, we summarize the current status of anti-stromal therapy and highlight recent advances in anti-stromal nanomedicines. We further examine the potential of nano-enabled anti-stromal therapy to enhance the anti-tumor efficacy of other therapeutic modalities, including chemotherapy, immunotherapy, phototherapy and radiotherapy. Finally, the potential concerns and future developments of anti-stromal nanomedicines are discussed.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>31918228</pmid><doi>10.1016/j.biomaterials.2019.119745</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2020-02, Vol.232, p.119745-119745, Article 119745 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2336244614 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Anti-stromal therapy Antineoplastic Agents - therapeutic use Cancer-associated fibroblast Desmoplastic tumor Drug delivery Drug Delivery Systems Humans Immunotherapy Nanomedicine Neoplasms - drug therapy |
title | Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20nanomedicines%20for%20anti-stromal%20therapy%20against%20desmoplastic%20tumors&rft.jtitle=Biomaterials&rft.au=Han,%20Xuexiang&rft.date=2020-02&rft.volume=232&rft.spage=119745&rft.epage=119745&rft.pages=119745-119745&rft.artnum=119745&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2019.119745&rft_dat=%3Cproquest_cross%3E2336244614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336244614&rft_id=info:pmid/31918228&rft_els_id=S0142961219308634&rfr_iscdi=true |