A novel concept for the biodegradation mechanism of dianionic catechol with homoprotocatechuate 2,3-dioxygenase: A non-proton-assisted process
The theory of “proton-assisted process” can well explain the catalytic mechanism of homoprotocatechuate 2,3-dioxygenase (2,3-HPCD) with a monoanionic substrate (homoprotocatechuate, HPCA). Here a “non-proton-assisted process” is presented to interpret catalytic mechanism of 2,3-HPCD with a dianionic...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2020-05, Vol.246, p.125796-125796, Article 125796 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125796 |
---|---|
container_issue | |
container_start_page | 125796 |
container_title | Chemosphere (Oxford) |
container_volume | 246 |
creator | Tu, Ningyu Zhang, Dongmei Niu, Xianchun Du, Cheng Zhang, Li Xie, Wenyu Niu, Xiaojun Liu, Yang Li, Youming |
description | The theory of “proton-assisted process” can well explain the catalytic mechanism of homoprotocatechuate 2,3-dioxygenase (2,3-HPCD) with a monoanionic substrate (homoprotocatechuate, HPCA). Here a “non-proton-assisted process” is presented to interpret catalytic mechanism of 2,3-HPCD with a dianionic substrate (4-nitrocatechol, 4NC). The ONIOM calculation is performed to investigate the reaction pathway of a wild-type 2,3-HPCD with 4NC (H200H–4NC system). The catalytic reaction is comprised of four steps: (1) A dioxygen attacks the aromatic ring to produce an alkylperoxo species. (2) O–O bond cleavage and the formation of an epoxide species occur. (3) A seven-membered O-heterocyclic compound is generated by the extinction of the epoxy structure. (4) The seven-membered ring undergoes ring opening to form the final product (C2–C3 cleavage product). The effective free energy barrier of the catalytic reaction of the H200H–4NC system is 26.2 kcal mol−1, which is much higher than that of the H200H-HPCA system. Furthermore, two calculated electronic configurations (Fe(III)–O2•- and Fe(III)-SQ•) have a high similarity to previously detected ones, which demonstrates that the Asn200 variant (H200N–4NC variant system) employs a C4 (para-carbon) pathway to produce a C4–C5 cleavage product. Our findings provide an in-depth understanding of the catalytic mechanisms of dianionic catechol and its derivatives.
[Display omitted]
•“non-proton-assisted process” is advanced to interpret the catalytic mechanism of 2,3-HPCD-4NC.•The catalytic mechanisms of C3 and C4 pathways for H200N–4NC are illustrated by a DFT working.•Two optimized electronic configurations of H200N–4NC coincide with the reported species. |
doi_str_mv | 10.1016/j.chemosphere.2019.125796 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2336243486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653519330371</els_id><sourcerecordid>2336243486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-788146c8523c49f68265b825808cf17a121030acd925e2a69df95d2a0c6173593</originalsourceid><addsrcrecordid>eNqNkc2OFCEUhYnROO3oKxjcubBafgoK3E06_iWTuNE1oeHWFJ0qaIGecV7CZ5a2RuPSDRcu3-HkchB6RcmWEirfHrZugiWV4wQZtoxQvaVMDFo-QhuqBt1RptVjtCGkF50UXFygZ6UcCGlioZ-iC041VZTwDfp5hWO6hRm7FB0cKx5TxnUCvA_Jw0223taQIl7ATTaGsuA0Yh_aNsXgsLO1XaQZ34U64Skt6ZhTTWv71FbM3vDOh_Tj_gaiLfAOnw1j9xuLnS0llAoet7ODUp6jJ6OdC7x4qJfo24f3X3efuusvHz_vrq47x4ehdoNStJdOCcZdr0epmBR7xYQiyo10sJS14Yh1XjMBzErtRy08s8RJOnCh-SV6vb7bfL-foFSzhOJgnm2EdCqGcS5Zz3slG6pX1OVUSobRHHNYbL43lJhzHOZg_onDnOMwaxxN-_LB5rRfwP9V_vn_BuxWANqwtwGyKS5AS8KHDK4an8J_2PwCfDejjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336243486</pqid></control><display><type>article</type><title>A novel concept for the biodegradation mechanism of dianionic catechol with homoprotocatechuate 2,3-dioxygenase: A non-proton-assisted process</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tu, Ningyu ; Zhang, Dongmei ; Niu, Xianchun ; Du, Cheng ; Zhang, Li ; Xie, Wenyu ; Niu, Xiaojun ; Liu, Yang ; Li, Youming</creator><creatorcontrib>Tu, Ningyu ; Zhang, Dongmei ; Niu, Xianchun ; Du, Cheng ; Zhang, Li ; Xie, Wenyu ; Niu, Xiaojun ; Liu, Yang ; Li, Youming</creatorcontrib><description>The theory of “proton-assisted process” can well explain the catalytic mechanism of homoprotocatechuate 2,3-dioxygenase (2,3-HPCD) with a monoanionic substrate (homoprotocatechuate, HPCA). Here a “non-proton-assisted process” is presented to interpret catalytic mechanism of 2,3-HPCD with a dianionic substrate (4-nitrocatechol, 4NC). The ONIOM calculation is performed to investigate the reaction pathway of a wild-type 2,3-HPCD with 4NC (H200H–4NC system). The catalytic reaction is comprised of four steps: (1) A dioxygen attacks the aromatic ring to produce an alkylperoxo species. (2) O–O bond cleavage and the formation of an epoxide species occur. (3) A seven-membered O-heterocyclic compound is generated by the extinction of the epoxy structure. (4) The seven-membered ring undergoes ring opening to form the final product (C2–C3 cleavage product). The effective free energy barrier of the catalytic reaction of the H200H–4NC system is 26.2 kcal mol−1, which is much higher than that of the H200H-HPCA system. Furthermore, two calculated electronic configurations (Fe(III)–O2•- and Fe(III)-SQ•) have a high similarity to previously detected ones, which demonstrates that the Asn200 variant (H200N–4NC variant system) employs a C4 (para-carbon) pathway to produce a C4–C5 cleavage product. Our findings provide an in-depth understanding of the catalytic mechanisms of dianionic catechol and its derivatives.
[Display omitted]
•“non-proton-assisted process” is advanced to interpret the catalytic mechanism of 2,3-HPCD-4NC.•The catalytic mechanisms of C3 and C4 pathways for H200N–4NC are illustrated by a DFT working.•Two optimized electronic configurations of H200N–4NC coincide with the reported species.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2019.125796</identifier><identifier>PMID: 31918103</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>2,3-HPCD ; 4NC ; Alkylperoxo species ; Biodegradation, Environmental ; Catalysis ; Catalytic mechanism ; Catechols - chemistry ; Catechols - metabolism ; Dioxygenases - metabolism ; Ferric Compounds ; Non-proton-assisted process ; Oxygen - chemistry ; Protons</subject><ispartof>Chemosphere (Oxford), 2020-05, Vol.246, p.125796-125796, Article 125796</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-788146c8523c49f68265b825808cf17a121030acd925e2a69df95d2a0c6173593</citedby><cites>FETCH-LOGICAL-c377t-788146c8523c49f68265b825808cf17a121030acd925e2a69df95d2a0c6173593</cites><orcidid>0000-0003-2352-1610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2019.125796$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31918103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Ningyu</creatorcontrib><creatorcontrib>Zhang, Dongmei</creatorcontrib><creatorcontrib>Niu, Xianchun</creatorcontrib><creatorcontrib>Du, Cheng</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Xie, Wenyu</creatorcontrib><creatorcontrib>Niu, Xiaojun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Youming</creatorcontrib><title>A novel concept for the biodegradation mechanism of dianionic catechol with homoprotocatechuate 2,3-dioxygenase: A non-proton-assisted process</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The theory of “proton-assisted process” can well explain the catalytic mechanism of homoprotocatechuate 2,3-dioxygenase (2,3-HPCD) with a monoanionic substrate (homoprotocatechuate, HPCA). Here a “non-proton-assisted process” is presented to interpret catalytic mechanism of 2,3-HPCD with a dianionic substrate (4-nitrocatechol, 4NC). The ONIOM calculation is performed to investigate the reaction pathway of a wild-type 2,3-HPCD with 4NC (H200H–4NC system). The catalytic reaction is comprised of four steps: (1) A dioxygen attacks the aromatic ring to produce an alkylperoxo species. (2) O–O bond cleavage and the formation of an epoxide species occur. (3) A seven-membered O-heterocyclic compound is generated by the extinction of the epoxy structure. (4) The seven-membered ring undergoes ring opening to form the final product (C2–C3 cleavage product). The effective free energy barrier of the catalytic reaction of the H200H–4NC system is 26.2 kcal mol−1, which is much higher than that of the H200H-HPCA system. Furthermore, two calculated electronic configurations (Fe(III)–O2•- and Fe(III)-SQ•) have a high similarity to previously detected ones, which demonstrates that the Asn200 variant (H200N–4NC variant system) employs a C4 (para-carbon) pathway to produce a C4–C5 cleavage product. Our findings provide an in-depth understanding of the catalytic mechanisms of dianionic catechol and its derivatives.
[Display omitted]
•“non-proton-assisted process” is advanced to interpret the catalytic mechanism of 2,3-HPCD-4NC.•The catalytic mechanisms of C3 and C4 pathways for H200N–4NC are illustrated by a DFT working.•Two optimized electronic configurations of H200N–4NC coincide with the reported species.</description><subject>2,3-HPCD</subject><subject>4NC</subject><subject>Alkylperoxo species</subject><subject>Biodegradation, Environmental</subject><subject>Catalysis</subject><subject>Catalytic mechanism</subject><subject>Catechols - chemistry</subject><subject>Catechols - metabolism</subject><subject>Dioxygenases - metabolism</subject><subject>Ferric Compounds</subject><subject>Non-proton-assisted process</subject><subject>Oxygen - chemistry</subject><subject>Protons</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2OFCEUhYnROO3oKxjcubBafgoK3E06_iWTuNE1oeHWFJ0qaIGecV7CZ5a2RuPSDRcu3-HkchB6RcmWEirfHrZugiWV4wQZtoxQvaVMDFo-QhuqBt1RptVjtCGkF50UXFygZ6UcCGlioZ-iC041VZTwDfp5hWO6hRm7FB0cKx5TxnUCvA_Jw0223taQIl7ATTaGsuA0Yh_aNsXgsLO1XaQZ34U64Skt6ZhTTWv71FbM3vDOh_Tj_gaiLfAOnw1j9xuLnS0llAoet7ODUp6jJ6OdC7x4qJfo24f3X3efuusvHz_vrq47x4ehdoNStJdOCcZdr0epmBR7xYQiyo10sJS14Yh1XjMBzErtRy08s8RJOnCh-SV6vb7bfL-foFSzhOJgnm2EdCqGcS5Zz3slG6pX1OVUSobRHHNYbL43lJhzHOZg_onDnOMwaxxN-_LB5rRfwP9V_vn_BuxWANqwtwGyKS5AS8KHDK4an8J_2PwCfDejjw</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Tu, Ningyu</creator><creator>Zhang, Dongmei</creator><creator>Niu, Xianchun</creator><creator>Du, Cheng</creator><creator>Zhang, Li</creator><creator>Xie, Wenyu</creator><creator>Niu, Xiaojun</creator><creator>Liu, Yang</creator><creator>Li, Youming</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2352-1610</orcidid></search><sort><creationdate>202005</creationdate><title>A novel concept for the biodegradation mechanism of dianionic catechol with homoprotocatechuate 2,3-dioxygenase: A non-proton-assisted process</title><author>Tu, Ningyu ; Zhang, Dongmei ; Niu, Xianchun ; Du, Cheng ; Zhang, Li ; Xie, Wenyu ; Niu, Xiaojun ; Liu, Yang ; Li, Youming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-788146c8523c49f68265b825808cf17a121030acd925e2a69df95d2a0c6173593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2,3-HPCD</topic><topic>4NC</topic><topic>Alkylperoxo species</topic><topic>Biodegradation, Environmental</topic><topic>Catalysis</topic><topic>Catalytic mechanism</topic><topic>Catechols - chemistry</topic><topic>Catechols - metabolism</topic><topic>Dioxygenases - metabolism</topic><topic>Ferric Compounds</topic><topic>Non-proton-assisted process</topic><topic>Oxygen - chemistry</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Ningyu</creatorcontrib><creatorcontrib>Zhang, Dongmei</creatorcontrib><creatorcontrib>Niu, Xianchun</creatorcontrib><creatorcontrib>Du, Cheng</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Xie, Wenyu</creatorcontrib><creatorcontrib>Niu, Xiaojun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Youming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Ningyu</au><au>Zhang, Dongmei</au><au>Niu, Xianchun</au><au>Du, Cheng</au><au>Zhang, Li</au><au>Xie, Wenyu</au><au>Niu, Xiaojun</au><au>Liu, Yang</au><au>Li, Youming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel concept for the biodegradation mechanism of dianionic catechol with homoprotocatechuate 2,3-dioxygenase: A non-proton-assisted process</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2020-05</date><risdate>2020</risdate><volume>246</volume><spage>125796</spage><epage>125796</epage><pages>125796-125796</pages><artnum>125796</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The theory of “proton-assisted process” can well explain the catalytic mechanism of homoprotocatechuate 2,3-dioxygenase (2,3-HPCD) with a monoanionic substrate (homoprotocatechuate, HPCA). Here a “non-proton-assisted process” is presented to interpret catalytic mechanism of 2,3-HPCD with a dianionic substrate (4-nitrocatechol, 4NC). The ONIOM calculation is performed to investigate the reaction pathway of a wild-type 2,3-HPCD with 4NC (H200H–4NC system). The catalytic reaction is comprised of four steps: (1) A dioxygen attacks the aromatic ring to produce an alkylperoxo species. (2) O–O bond cleavage and the formation of an epoxide species occur. (3) A seven-membered O-heterocyclic compound is generated by the extinction of the epoxy structure. (4) The seven-membered ring undergoes ring opening to form the final product (C2–C3 cleavage product). The effective free energy barrier of the catalytic reaction of the H200H–4NC system is 26.2 kcal mol−1, which is much higher than that of the H200H-HPCA system. Furthermore, two calculated electronic configurations (Fe(III)–O2•- and Fe(III)-SQ•) have a high similarity to previously detected ones, which demonstrates that the Asn200 variant (H200N–4NC variant system) employs a C4 (para-carbon) pathway to produce a C4–C5 cleavage product. Our findings provide an in-depth understanding of the catalytic mechanisms of dianionic catechol and its derivatives.
[Display omitted]
•“non-proton-assisted process” is advanced to interpret the catalytic mechanism of 2,3-HPCD-4NC.•The catalytic mechanisms of C3 and C4 pathways for H200N–4NC are illustrated by a DFT working.•Two optimized electronic configurations of H200N–4NC coincide with the reported species.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31918103</pmid><doi>10.1016/j.chemosphere.2019.125796</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2352-1610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2020-05, Vol.246, p.125796-125796, Article 125796 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2336243486 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 2,3-HPCD 4NC Alkylperoxo species Biodegradation, Environmental Catalysis Catalytic mechanism Catechols - chemistry Catechols - metabolism Dioxygenases - metabolism Ferric Compounds Non-proton-assisted process Oxygen - chemistry Protons |
title | A novel concept for the biodegradation mechanism of dianionic catechol with homoprotocatechuate 2,3-dioxygenase: A non-proton-assisted process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20concept%20for%20the%20biodegradation%20mechanism%20of%20dianionic%20catechol%20with%20homoprotocatechuate%202,3-dioxygenase:%20A%20non-proton-assisted%20process&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Tu,%20Ningyu&rft.date=2020-05&rft.volume=246&rft.spage=125796&rft.epage=125796&rft.pages=125796-125796&rft.artnum=125796&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2019.125796&rft_dat=%3Cproquest_cross%3E2336243486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336243486&rft_id=info:pmid/31918103&rft_els_id=S0045653519330371&rfr_iscdi=true |