Spin-Orbit Optical Hall Effect

The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-12, Vol.123 (24), p.243904-243904, Article 243904
Hauptverfasser: Fu, Shenhe, Guo, Chaoheng, Liu, Guohua, Li, Yongyao, Yin, Hao, Li, Zhen, Chen, Zhenqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243904
container_issue 24
container_start_page 243904
container_title Physical review letters
container_volume 123
creator Fu, Shenhe
Guo, Chaoheng
Liu, Guohua
Li, Yongyao
Yin, Hao
Li, Zhen
Chen, Zhenqiang
description The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision measurements, material characterizations, and photonic devices, as well as quantum optics. However, to date, the Hall effect only expresses angular momentum separation of the spin term (spin-spin separation) or the orbital term (orbit-orbit separation), whereas the spin-orbit angular momentum separation, named as the spin-orbit Hall effect, remains unexplored. Here we demonstrate for the first time that this spin-orbit effect could appear when the polarization state of the light beam evolves adiabatically from the equator toward the poles of the higher-order Poincaré sphere, rather than the conventional Poincaré sphere. In this scenario, the intrinsic spin and orbital components of the light beam become separated, leading to equal nonzero spin and orbital angular momenta in magnitude but with the opposite sign. We further show that the spin-orbit Hall effect can be controlled via crystal birefringence and hence holds promise for applications; e.g., it is shown that the separated orbital angular momentum could be utilized in particle manipulations.
doi_str_mv 10.1103/PhysRevLett.123.243904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2336243174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327890268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ea169413c868e277ae3ab6c6f6d15bfaa92372dedb0d37ef6547d17fea37be1c3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobk7_whh4401nTk6XNJcyphMGEz-uQ5qeYEe31qYV9u-NbIp4dW6e9-W8D2Nj4FMAjrdP7_vwTJ8r6ropCJyKFDVPT9gQuNKJAkhP2ZBzhERzrgbsIoQN5xyEzM7ZAEELkaEasvFLU-6SdZuX3WTddKWz1WRpq2qy8J5cd8nOvK0CXR3viL3dL17ny2S1fnic360Sh1p0CVmQOgV0mcxIKGUJbS6d9LKAWe6t1QKVKKjIeYGKvJylqgDlyaLKCRyO2M2ht2nrj55CZ7ZlcFRVdkd1H4xAlHEiqDSi1__QTd23u_hdpITKNI8bIyUPlGvrEFrypmnLrW33Brj5Nmj-GDTRoDkYjMHxsb7Pt1T8xn6U4Rev3m0n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327890268</pqid></control><display><type>article</type><title>Spin-Orbit Optical Hall Effect</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fu, Shenhe ; Guo, Chaoheng ; Liu, Guohua ; Li, Yongyao ; Yin, Hao ; Li, Zhen ; Chen, Zhenqiang</creator><creatorcontrib>Fu, Shenhe ; Guo, Chaoheng ; Liu, Guohua ; Li, Yongyao ; Yin, Hao ; Li, Zhen ; Chen, Zhenqiang</creatorcontrib><description>The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision measurements, material characterizations, and photonic devices, as well as quantum optics. However, to date, the Hall effect only expresses angular momentum separation of the spin term (spin-spin separation) or the orbital term (orbit-orbit separation), whereas the spin-orbit angular momentum separation, named as the spin-orbit Hall effect, remains unexplored. Here we demonstrate for the first time that this spin-orbit effect could appear when the polarization state of the light beam evolves adiabatically from the equator toward the poles of the higher-order Poincaré sphere, rather than the conventional Poincaré sphere. In this scenario, the intrinsic spin and orbital components of the light beam become separated, leading to equal nonzero spin and orbital angular momenta in magnitude but with the opposite sign. We further show that the spin-orbit Hall effect can be controlled via crystal birefringence and hence holds promise for applications; e.g., it is shown that the separated orbital angular momentum could be utilized in particle manipulations.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.243904</identifier><identifier>PMID: 31922837</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Angular momentum ; Birefringence ; Electromagnetism ; Hall effect ; Light beams ; Photonics ; Poincare spheres ; Quantum optics ; Separation ; Spin-orbit interactions</subject><ispartof>Physical review letters, 2019-12, Vol.123 (24), p.243904-243904, Article 243904</ispartof><rights>Copyright American Physical Society Dec 13, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ea169413c868e277ae3ab6c6f6d15bfaa92372dedb0d37ef6547d17fea37be1c3</citedby><cites>FETCH-LOGICAL-c392t-ea169413c868e277ae3ab6c6f6d15bfaa92372dedb0d37ef6547d17fea37be1c3</cites><orcidid>0000-0003-3067-4762 ; 0000-0001-8417-4929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31922837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Shenhe</creatorcontrib><creatorcontrib>Guo, Chaoheng</creatorcontrib><creatorcontrib>Liu, Guohua</creatorcontrib><creatorcontrib>Li, Yongyao</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Chen, Zhenqiang</creatorcontrib><title>Spin-Orbit Optical Hall Effect</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision measurements, material characterizations, and photonic devices, as well as quantum optics. However, to date, the Hall effect only expresses angular momentum separation of the spin term (spin-spin separation) or the orbital term (orbit-orbit separation), whereas the spin-orbit angular momentum separation, named as the spin-orbit Hall effect, remains unexplored. Here we demonstrate for the first time that this spin-orbit effect could appear when the polarization state of the light beam evolves adiabatically from the equator toward the poles of the higher-order Poincaré sphere, rather than the conventional Poincaré sphere. In this scenario, the intrinsic spin and orbital components of the light beam become separated, leading to equal nonzero spin and orbital angular momenta in magnitude but with the opposite sign. We further show that the spin-orbit Hall effect can be controlled via crystal birefringence and hence holds promise for applications; e.g., it is shown that the separated orbital angular momentum could be utilized in particle manipulations.</description><subject>Angular momentum</subject><subject>Birefringence</subject><subject>Electromagnetism</subject><subject>Hall effect</subject><subject>Light beams</subject><subject>Photonics</subject><subject>Poincare spheres</subject><subject>Quantum optics</subject><subject>Separation</subject><subject>Spin-orbit interactions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMobk7_whh4401nTk6XNJcyphMGEz-uQ5qeYEe31qYV9u-NbIp4dW6e9-W8D2Nj4FMAjrdP7_vwTJ8r6ropCJyKFDVPT9gQuNKJAkhP2ZBzhERzrgbsIoQN5xyEzM7ZAEELkaEasvFLU-6SdZuX3WTddKWz1WRpq2qy8J5cd8nOvK0CXR3viL3dL17ny2S1fnic360Sh1p0CVmQOgV0mcxIKGUJbS6d9LKAWe6t1QKVKKjIeYGKvJylqgDlyaLKCRyO2M2ht2nrj55CZ7ZlcFRVdkd1H4xAlHEiqDSi1__QTd23u_hdpITKNI8bIyUPlGvrEFrypmnLrW33Brj5Nmj-GDTRoDkYjMHxsb7Pt1T8xn6U4Rev3m0n</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Fu, Shenhe</creator><creator>Guo, Chaoheng</creator><creator>Liu, Guohua</creator><creator>Li, Yongyao</creator><creator>Yin, Hao</creator><creator>Li, Zhen</creator><creator>Chen, Zhenqiang</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3067-4762</orcidid><orcidid>https://orcid.org/0000-0001-8417-4929</orcidid></search><sort><creationdate>20191213</creationdate><title>Spin-Orbit Optical Hall Effect</title><author>Fu, Shenhe ; Guo, Chaoheng ; Liu, Guohua ; Li, Yongyao ; Yin, Hao ; Li, Zhen ; Chen, Zhenqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ea169413c868e277ae3ab6c6f6d15bfaa92372dedb0d37ef6547d17fea37be1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular momentum</topic><topic>Birefringence</topic><topic>Electromagnetism</topic><topic>Hall effect</topic><topic>Light beams</topic><topic>Photonics</topic><topic>Poincare spheres</topic><topic>Quantum optics</topic><topic>Separation</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Shenhe</creatorcontrib><creatorcontrib>Guo, Chaoheng</creatorcontrib><creatorcontrib>Liu, Guohua</creatorcontrib><creatorcontrib>Li, Yongyao</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Chen, Zhenqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Shenhe</au><au>Guo, Chaoheng</au><au>Liu, Guohua</au><au>Li, Yongyao</au><au>Yin, Hao</au><au>Li, Zhen</au><au>Chen, Zhenqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-Orbit Optical Hall Effect</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-12-13</date><risdate>2019</risdate><volume>123</volume><issue>24</issue><spage>243904</spage><epage>243904</epage><pages>243904-243904</pages><artnum>243904</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision measurements, material characterizations, and photonic devices, as well as quantum optics. However, to date, the Hall effect only expresses angular momentum separation of the spin term (spin-spin separation) or the orbital term (orbit-orbit separation), whereas the spin-orbit angular momentum separation, named as the spin-orbit Hall effect, remains unexplored. Here we demonstrate for the first time that this spin-orbit effect could appear when the polarization state of the light beam evolves adiabatically from the equator toward the poles of the higher-order Poincaré sphere, rather than the conventional Poincaré sphere. In this scenario, the intrinsic spin and orbital components of the light beam become separated, leading to equal nonzero spin and orbital angular momenta in magnitude but with the opposite sign. We further show that the spin-orbit Hall effect can be controlled via crystal birefringence and hence holds promise for applications; e.g., it is shown that the separated orbital angular momentum could be utilized in particle manipulations.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31922837</pmid><doi>10.1103/PhysRevLett.123.243904</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3067-4762</orcidid><orcidid>https://orcid.org/0000-0001-8417-4929</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-12, Vol.123 (24), p.243904-243904, Article 243904
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2336243174
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Angular momentum
Birefringence
Electromagnetism
Hall effect
Light beams
Photonics
Poincare spheres
Quantum optics
Separation
Spin-orbit interactions
title Spin-Orbit Optical Hall Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-Orbit%20Optical%20Hall%20Effect&rft.jtitle=Physical%20review%20letters&rft.au=Fu,%20Shenhe&rft.date=2019-12-13&rft.volume=123&rft.issue=24&rft.spage=243904&rft.epage=243904&rft.pages=243904-243904&rft.artnum=243904&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.243904&rft_dat=%3Cproquest_cross%3E2327890268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327890268&rft_id=info:pmid/31922837&rfr_iscdi=true