Spin-Orbit Optical Hall Effect
The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-12, Vol.123 (24), p.243904-243904, Article 243904 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243904 |
---|---|
container_issue | 24 |
container_start_page | 243904 |
container_title | Physical review letters |
container_volume | 123 |
creator | Fu, Shenhe Guo, Chaoheng Liu, Guohua Li, Yongyao Yin, Hao Li, Zhen Chen, Zhenqiang |
description | The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision measurements, material characterizations, and photonic devices, as well as quantum optics. However, to date, the Hall effect only expresses angular momentum separation of the spin term (spin-spin separation) or the orbital term (orbit-orbit separation), whereas the spin-orbit angular momentum separation, named as the spin-orbit Hall effect, remains unexplored. Here we demonstrate for the first time that this spin-orbit effect could appear when the polarization state of the light beam evolves adiabatically from the equator toward the poles of the higher-order Poincaré sphere, rather than the conventional Poincaré sphere. In this scenario, the intrinsic spin and orbital components of the light beam become separated, leading to equal nonzero spin and orbital angular momenta in magnitude but with the opposite sign. We further show that the spin-orbit Hall effect can be controlled via crystal birefringence and hence holds promise for applications; e.g., it is shown that the separated orbital angular momentum could be utilized in particle manipulations. |
doi_str_mv | 10.1103/PhysRevLett.123.243904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2336243174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2327890268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ea169413c868e277ae3ab6c6f6d15bfaa92372dedb0d37ef6547d17fea37be1c3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMobk7_whh4401nTk6XNJcyphMGEz-uQ5qeYEe31qYV9u-NbIp4dW6e9-W8D2Nj4FMAjrdP7_vwTJ8r6ropCJyKFDVPT9gQuNKJAkhP2ZBzhERzrgbsIoQN5xyEzM7ZAEELkaEasvFLU-6SdZuX3WTddKWz1WRpq2qy8J5cd8nOvK0CXR3viL3dL17ny2S1fnic360Sh1p0CVmQOgV0mcxIKGUJbS6d9LKAWe6t1QKVKKjIeYGKvJylqgDlyaLKCRyO2M2ht2nrj55CZ7ZlcFRVdkd1H4xAlHEiqDSi1__QTd23u_hdpITKNI8bIyUPlGvrEFrypmnLrW33Brj5Nmj-GDTRoDkYjMHxsb7Pt1T8xn6U4Rev3m0n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2327890268</pqid></control><display><type>article</type><title>Spin-Orbit Optical Hall Effect</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fu, Shenhe ; Guo, Chaoheng ; Liu, Guohua ; Li, Yongyao ; Yin, Hao ; Li, Zhen ; Chen, Zhenqiang</creator><creatorcontrib>Fu, Shenhe ; Guo, Chaoheng ; Liu, Guohua ; Li, Yongyao ; Yin, Hao ; Li, Zhen ; Chen, Zhenqiang</creatorcontrib><description>The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision measurements, material characterizations, and photonic devices, as well as quantum optics. However, to date, the Hall effect only expresses angular momentum separation of the spin term (spin-spin separation) or the orbital term (orbit-orbit separation), whereas the spin-orbit angular momentum separation, named as the spin-orbit Hall effect, remains unexplored. Here we demonstrate for the first time that this spin-orbit effect could appear when the polarization state of the light beam evolves adiabatically from the equator toward the poles of the higher-order Poincaré sphere, rather than the conventional Poincaré sphere. In this scenario, the intrinsic spin and orbital components of the light beam become separated, leading to equal nonzero spin and orbital angular momenta in magnitude but with the opposite sign. We further show that the spin-orbit Hall effect can be controlled via crystal birefringence and hence holds promise for applications; e.g., it is shown that the separated orbital angular momentum could be utilized in particle manipulations.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.243904</identifier><identifier>PMID: 31922837</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Angular momentum ; Birefringence ; Electromagnetism ; Hall effect ; Light beams ; Photonics ; Poincare spheres ; Quantum optics ; Separation ; Spin-orbit interactions</subject><ispartof>Physical review letters, 2019-12, Vol.123 (24), p.243904-243904, Article 243904</ispartof><rights>Copyright American Physical Society Dec 13, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ea169413c868e277ae3ab6c6f6d15bfaa92372dedb0d37ef6547d17fea37be1c3</citedby><cites>FETCH-LOGICAL-c392t-ea169413c868e277ae3ab6c6f6d15bfaa92372dedb0d37ef6547d17fea37be1c3</cites><orcidid>0000-0003-3067-4762 ; 0000-0001-8417-4929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31922837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Shenhe</creatorcontrib><creatorcontrib>Guo, Chaoheng</creatorcontrib><creatorcontrib>Liu, Guohua</creatorcontrib><creatorcontrib>Li, Yongyao</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Chen, Zhenqiang</creatorcontrib><title>Spin-Orbit Optical Hall Effect</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision measurements, material characterizations, and photonic devices, as well as quantum optics. However, to date, the Hall effect only expresses angular momentum separation of the spin term (spin-spin separation) or the orbital term (orbit-orbit separation), whereas the spin-orbit angular momentum separation, named as the spin-orbit Hall effect, remains unexplored. Here we demonstrate for the first time that this spin-orbit effect could appear when the polarization state of the light beam evolves adiabatically from the equator toward the poles of the higher-order Poincaré sphere, rather than the conventional Poincaré sphere. In this scenario, the intrinsic spin and orbital components of the light beam become separated, leading to equal nonzero spin and orbital angular momenta in magnitude but with the opposite sign. We further show that the spin-orbit Hall effect can be controlled via crystal birefringence and hence holds promise for applications; e.g., it is shown that the separated orbital angular momentum could be utilized in particle manipulations.</description><subject>Angular momentum</subject><subject>Birefringence</subject><subject>Electromagnetism</subject><subject>Hall effect</subject><subject>Light beams</subject><subject>Photonics</subject><subject>Poincare spheres</subject><subject>Quantum optics</subject><subject>Separation</subject><subject>Spin-orbit interactions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMobk7_whh4401nTk6XNJcyphMGEz-uQ5qeYEe31qYV9u-NbIp4dW6e9-W8D2Nj4FMAjrdP7_vwTJ8r6ropCJyKFDVPT9gQuNKJAkhP2ZBzhERzrgbsIoQN5xyEzM7ZAEELkaEasvFLU-6SdZuX3WTddKWz1WRpq2qy8J5cd8nOvK0CXR3viL3dL17ny2S1fnic360Sh1p0CVmQOgV0mcxIKGUJbS6d9LKAWe6t1QKVKKjIeYGKvJylqgDlyaLKCRyO2M2ht2nrj55CZ7ZlcFRVdkd1H4xAlHEiqDSi1__QTd23u_hdpITKNI8bIyUPlGvrEFrypmnLrW33Brj5Nmj-GDTRoDkYjMHxsb7Pt1T8xn6U4Rev3m0n</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Fu, Shenhe</creator><creator>Guo, Chaoheng</creator><creator>Liu, Guohua</creator><creator>Li, Yongyao</creator><creator>Yin, Hao</creator><creator>Li, Zhen</creator><creator>Chen, Zhenqiang</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3067-4762</orcidid><orcidid>https://orcid.org/0000-0001-8417-4929</orcidid></search><sort><creationdate>20191213</creationdate><title>Spin-Orbit Optical Hall Effect</title><author>Fu, Shenhe ; Guo, Chaoheng ; Liu, Guohua ; Li, Yongyao ; Yin, Hao ; Li, Zhen ; Chen, Zhenqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ea169413c868e277ae3ab6c6f6d15bfaa92372dedb0d37ef6547d17fea37be1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Angular momentum</topic><topic>Birefringence</topic><topic>Electromagnetism</topic><topic>Hall effect</topic><topic>Light beams</topic><topic>Photonics</topic><topic>Poincare spheres</topic><topic>Quantum optics</topic><topic>Separation</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Shenhe</creatorcontrib><creatorcontrib>Guo, Chaoheng</creatorcontrib><creatorcontrib>Liu, Guohua</creatorcontrib><creatorcontrib>Li, Yongyao</creatorcontrib><creatorcontrib>Yin, Hao</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Chen, Zhenqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Shenhe</au><au>Guo, Chaoheng</au><au>Liu, Guohua</au><au>Li, Yongyao</au><au>Yin, Hao</au><au>Li, Zhen</au><au>Chen, Zhenqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-Orbit Optical Hall Effect</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-12-13</date><risdate>2019</risdate><volume>123</volume><issue>24</issue><spage>243904</spage><epage>243904</epage><pages>243904-243904</pages><artnum>243904</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The optical Hall effect manifests itself as angular momentum separation induced by the photonic spin-orbit interaction. Such a celebrated Hall effect, at the mercy of the angular momentum conservation law, has attracted tremendous interest owing to its science and potential applications in precision measurements, material characterizations, and photonic devices, as well as quantum optics. However, to date, the Hall effect only expresses angular momentum separation of the spin term (spin-spin separation) or the orbital term (orbit-orbit separation), whereas the spin-orbit angular momentum separation, named as the spin-orbit Hall effect, remains unexplored. Here we demonstrate for the first time that this spin-orbit effect could appear when the polarization state of the light beam evolves adiabatically from the equator toward the poles of the higher-order Poincaré sphere, rather than the conventional Poincaré sphere. In this scenario, the intrinsic spin and orbital components of the light beam become separated, leading to equal nonzero spin and orbital angular momenta in magnitude but with the opposite sign. We further show that the spin-orbit Hall effect can be controlled via crystal birefringence and hence holds promise for applications; e.g., it is shown that the separated orbital angular momentum could be utilized in particle manipulations.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31922837</pmid><doi>10.1103/PhysRevLett.123.243904</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3067-4762</orcidid><orcidid>https://orcid.org/0000-0001-8417-4929</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-12, Vol.123 (24), p.243904-243904, Article 243904 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2336243174 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Angular momentum Birefringence Electromagnetism Hall effect Light beams Photonics Poincare spheres Quantum optics Separation Spin-orbit interactions |
title | Spin-Orbit Optical Hall Effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-Orbit%20Optical%20Hall%20Effect&rft.jtitle=Physical%20review%20letters&rft.au=Fu,%20Shenhe&rft.date=2019-12-13&rft.volume=123&rft.issue=24&rft.spage=243904&rft.epage=243904&rft.pages=243904-243904&rft.artnum=243904&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.243904&rft_dat=%3Cproquest_cross%3E2327890268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2327890268&rft_id=info:pmid/31922837&rfr_iscdi=true |