Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration

Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive synthese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-01, Vol.12 (3), p.3746-3754
Hauptverfasser: Rahim, Md. Arifur, Lin, Gan, Tomanin, Pietro Pacchin, Ju, Yi, Barlow, Anders, Björnmalm, Mattias, Caruso, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3754
container_issue 3
container_start_page 3746
container_title ACS applied materials & interfaces
container_volume 12
creator Rahim, Md. Arifur
Lin, Gan
Tomanin, Pietro Pacchin
Ju, Yi
Barlow, Anders
Björnmalm, Mattias
Caruso, Frank
description Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.
doi_str_mv 10.1021/acsami.9b19097
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2335182219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335182219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-5a3c91d461b32b95f32bdba6d95d0be337c17f91fab6d17ad8994a638359dcde3</originalsourceid><addsrcrecordid>eNp1kLtOw0AQRVcIREKgpUQuEZLDzq4f2TJEvKQgEIZ6tU_hyPaGXbtIxz_wh3wJBod0NDNTnHtn5iJ0CngKmMClUEHU5ZRJYJjle2gMLEniGUnJ_m5OkhE6CmGFcUYJTg_RiAIDmjIYo-fCVDaeh2BqWW0iZyMRPZhWVF8fn09vpnFVqaLCeWmaNrLOR1feCR0Xa6Na39UDGxXmvTOh9aItXXOMDqyogjnZ9gl6vbl-WdzFy8fb-8V8GQua4zZOBVUMdJKBpESy1PZVS5FplmosDaW5gtwysEJmGnKhZ4wlIqOz_nCttKETdD74rr37Xc_rMihTVaIxrgucUJrCjBBgPTodUOVdCN5YvvZlLfyGA-Y_OfIhR77NsRecbb07WRu9w_-C64GLAeiFfOU63_Sv_uf2Devdfp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335182219</pqid></control><display><type>article</type><title>Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration</title><source>American Chemical Society</source><creator>Rahim, Md. Arifur ; Lin, Gan ; Tomanin, Pietro Pacchin ; Ju, Yi ; Barlow, Anders ; Björnmalm, Mattias ; Caruso, Frank</creator><creatorcontrib>Rahim, Md. Arifur ; Lin, Gan ; Tomanin, Pietro Pacchin ; Ju, Yi ; Barlow, Anders ; Björnmalm, Mattias ; Caruso, Frank</creatorcontrib><description>Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b19097</identifier><identifier>PMID: 31913591</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-01, Vol.12 (3), p.3746-3754</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-5a3c91d461b32b95f32bdba6d95d0be337c17f91fab6d17ad8994a638359dcde3</citedby><cites>FETCH-LOGICAL-a370t-5a3c91d461b32b95f32bdba6d95d0be337c17f91fab6d17ad8994a638359dcde3</cites><orcidid>0000-0002-0197-497X ; 0000-0003-0103-1207 ; 0000-0002-9876-7079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b19097$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b19097$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31913591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahim, Md. Arifur</creatorcontrib><creatorcontrib>Lin, Gan</creatorcontrib><creatorcontrib>Tomanin, Pietro Pacchin</creatorcontrib><creatorcontrib>Ju, Yi</creatorcontrib><creatorcontrib>Barlow, Anders</creatorcontrib><creatorcontrib>Björnmalm, Mattias</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><title>Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOw0AQRVcIREKgpUQuEZLDzq4f2TJEvKQgEIZ6tU_hyPaGXbtIxz_wh3wJBod0NDNTnHtn5iJ0CngKmMClUEHU5ZRJYJjle2gMLEniGUnJ_m5OkhE6CmGFcUYJTg_RiAIDmjIYo-fCVDaeh2BqWW0iZyMRPZhWVF8fn09vpnFVqaLCeWmaNrLOR1feCR0Xa6Na39UDGxXmvTOh9aItXXOMDqyogjnZ9gl6vbl-WdzFy8fb-8V8GQua4zZOBVUMdJKBpESy1PZVS5FplmosDaW5gtwysEJmGnKhZ4wlIqOz_nCttKETdD74rr37Xc_rMihTVaIxrgucUJrCjBBgPTodUOVdCN5YvvZlLfyGA-Y_OfIhR77NsRecbb07WRu9w_-C64GLAeiFfOU63_Sv_uf2Devdfp8</recordid><startdate>20200122</startdate><enddate>20200122</enddate><creator>Rahim, Md. Arifur</creator><creator>Lin, Gan</creator><creator>Tomanin, Pietro Pacchin</creator><creator>Ju, Yi</creator><creator>Barlow, Anders</creator><creator>Björnmalm, Mattias</creator><creator>Caruso, Frank</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid><orcidid>https://orcid.org/0000-0003-0103-1207</orcidid><orcidid>https://orcid.org/0000-0002-9876-7079</orcidid></search><sort><creationdate>20200122</creationdate><title>Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration</title><author>Rahim, Md. Arifur ; Lin, Gan ; Tomanin, Pietro Pacchin ; Ju, Yi ; Barlow, Anders ; Björnmalm, Mattias ; Caruso, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-5a3c91d461b32b95f32bdba6d95d0be337c17f91fab6d17ad8994a638359dcde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahim, Md. Arifur</creatorcontrib><creatorcontrib>Lin, Gan</creatorcontrib><creatorcontrib>Tomanin, Pietro Pacchin</creatorcontrib><creatorcontrib>Ju, Yi</creatorcontrib><creatorcontrib>Barlow, Anders</creatorcontrib><creatorcontrib>Björnmalm, Mattias</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahim, Md. Arifur</au><au>Lin, Gan</au><au>Tomanin, Pietro Pacchin</au><au>Ju, Yi</au><au>Barlow, Anders</au><au>Björnmalm, Mattias</au><au>Caruso, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-01-22</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>3746</spage><epage>3754</epage><pages>3746-3754</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31913591</pmid><doi>10.1021/acsami.9b19097</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid><orcidid>https://orcid.org/0000-0003-0103-1207</orcidid><orcidid>https://orcid.org/0000-0002-9876-7079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-01, Vol.12 (3), p.3746-3754
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2335182219
source American Chemical Society
title Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembly%20of%20a%20Metal%E2%80%93Phenolic%20Sorbent%20for%20Broad-Spectrum%20Metal%20Sequestration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Rahim,%20Md.%20Arifur&rft.date=2020-01-22&rft.volume=12&rft.issue=3&rft.spage=3746&rft.epage=3754&rft.pages=3746-3754&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b19097&rft_dat=%3Cproquest_cross%3E2335182219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335182219&rft_id=info:pmid/31913591&rfr_iscdi=true