Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration
Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive synthese...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-01, Vol.12 (3), p.3746-3754 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3754 |
---|---|
container_issue | 3 |
container_start_page | 3746 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Rahim, Md. Arifur Lin, Gan Tomanin, Pietro Pacchin Ju, Yi Barlow, Anders Björnmalm, Mattias Caruso, Frank |
description | Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts. |
doi_str_mv | 10.1021/acsami.9b19097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2335182219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335182219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-5a3c91d461b32b95f32bdba6d95d0be337c17f91fab6d17ad8994a638359dcde3</originalsourceid><addsrcrecordid>eNp1kLtOw0AQRVcIREKgpUQuEZLDzq4f2TJEvKQgEIZ6tU_hyPaGXbtIxz_wh3wJBod0NDNTnHtn5iJ0CngKmMClUEHU5ZRJYJjle2gMLEniGUnJ_m5OkhE6CmGFcUYJTg_RiAIDmjIYo-fCVDaeh2BqWW0iZyMRPZhWVF8fn09vpnFVqaLCeWmaNrLOR1feCR0Xa6Na39UDGxXmvTOh9aItXXOMDqyogjnZ9gl6vbl-WdzFy8fb-8V8GQua4zZOBVUMdJKBpESy1PZVS5FplmosDaW5gtwysEJmGnKhZ4wlIqOz_nCttKETdD74rr37Xc_rMihTVaIxrgucUJrCjBBgPTodUOVdCN5YvvZlLfyGA-Y_OfIhR77NsRecbb07WRu9w_-C64GLAeiFfOU63_Sv_uf2Devdfp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335182219</pqid></control><display><type>article</type><title>Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration</title><source>American Chemical Society</source><creator>Rahim, Md. Arifur ; Lin, Gan ; Tomanin, Pietro Pacchin ; Ju, Yi ; Barlow, Anders ; Björnmalm, Mattias ; Caruso, Frank</creator><creatorcontrib>Rahim, Md. Arifur ; Lin, Gan ; Tomanin, Pietro Pacchin ; Ju, Yi ; Barlow, Anders ; Björnmalm, Mattias ; Caruso, Frank</creatorcontrib><description>Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b19097</identifier><identifier>PMID: 31913591</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-01, Vol.12 (3), p.3746-3754</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-5a3c91d461b32b95f32bdba6d95d0be337c17f91fab6d17ad8994a638359dcde3</citedby><cites>FETCH-LOGICAL-a370t-5a3c91d461b32b95f32bdba6d95d0be337c17f91fab6d17ad8994a638359dcde3</cites><orcidid>0000-0002-0197-497X ; 0000-0003-0103-1207 ; 0000-0002-9876-7079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b19097$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b19097$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31913591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rahim, Md. Arifur</creatorcontrib><creatorcontrib>Lin, Gan</creatorcontrib><creatorcontrib>Tomanin, Pietro Pacchin</creatorcontrib><creatorcontrib>Ju, Yi</creatorcontrib><creatorcontrib>Barlow, Anders</creatorcontrib><creatorcontrib>Björnmalm, Mattias</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><title>Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOw0AQRVcIREKgpUQuEZLDzq4f2TJEvKQgEIZ6tU_hyPaGXbtIxz_wh3wJBod0NDNTnHtn5iJ0CngKmMClUEHU5ZRJYJjle2gMLEniGUnJ_m5OkhE6CmGFcUYJTg_RiAIDmjIYo-fCVDaeh2BqWW0iZyMRPZhWVF8fn09vpnFVqaLCeWmaNrLOR1feCR0Xa6Na39UDGxXmvTOh9aItXXOMDqyogjnZ9gl6vbl-WdzFy8fb-8V8GQua4zZOBVUMdJKBpESy1PZVS5FplmosDaW5gtwysEJmGnKhZ4wlIqOz_nCttKETdD74rr37Xc_rMihTVaIxrgucUJrCjBBgPTodUOVdCN5YvvZlLfyGA-Y_OfIhR77NsRecbb07WRu9w_-C64GLAeiFfOU63_Sv_uf2Devdfp8</recordid><startdate>20200122</startdate><enddate>20200122</enddate><creator>Rahim, Md. Arifur</creator><creator>Lin, Gan</creator><creator>Tomanin, Pietro Pacchin</creator><creator>Ju, Yi</creator><creator>Barlow, Anders</creator><creator>Björnmalm, Mattias</creator><creator>Caruso, Frank</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid><orcidid>https://orcid.org/0000-0003-0103-1207</orcidid><orcidid>https://orcid.org/0000-0002-9876-7079</orcidid></search><sort><creationdate>20200122</creationdate><title>Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration</title><author>Rahim, Md. Arifur ; Lin, Gan ; Tomanin, Pietro Pacchin ; Ju, Yi ; Barlow, Anders ; Björnmalm, Mattias ; Caruso, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-5a3c91d461b32b95f32bdba6d95d0be337c17f91fab6d17ad8994a638359dcde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahim, Md. Arifur</creatorcontrib><creatorcontrib>Lin, Gan</creatorcontrib><creatorcontrib>Tomanin, Pietro Pacchin</creatorcontrib><creatorcontrib>Ju, Yi</creatorcontrib><creatorcontrib>Barlow, Anders</creatorcontrib><creatorcontrib>Björnmalm, Mattias</creatorcontrib><creatorcontrib>Caruso, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahim, Md. Arifur</au><au>Lin, Gan</au><au>Tomanin, Pietro Pacchin</au><au>Ju, Yi</au><au>Barlow, Anders</au><au>Björnmalm, Mattias</au><au>Caruso, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-01-22</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>3746</spage><epage>3754</epage><pages>3746-3754</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31913591</pmid><doi>10.1021/acsami.9b19097</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0197-497X</orcidid><orcidid>https://orcid.org/0000-0003-0103-1207</orcidid><orcidid>https://orcid.org/0000-0002-9876-7079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-01, Vol.12 (3), p.3746-3754 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2335182219 |
source | American Chemical Society |
title | Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Assembly%20of%20a%20Metal%E2%80%93Phenolic%20Sorbent%20for%20Broad-Spectrum%20Metal%20Sequestration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Rahim,%20Md.%20Arifur&rft.date=2020-01-22&rft.volume=12&rft.issue=3&rft.spage=3746&rft.epage=3754&rft.pages=3746-3754&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b19097&rft_dat=%3Cproquest_cross%3E2335182219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335182219&rft_id=info:pmid/31913591&rfr_iscdi=true |