A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization
Conventional dense thin-film composite (TFC) membranes evince a universally low water permeability, the increase of which typically relies on introducing additional transport channels based on intricate steps within a membrane preparation process. In this study, we reported a novel and simplified pr...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-02, Vol.54 (3), p.1946-1954 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1954 |
---|---|
container_issue | 3 |
container_start_page | 1946 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Liu, Yanling Zhu, Junyong Zheng, Junfeng Gao, Xiaoqi Wang, Jing Wang, Xiaomao Xie, Yuefeng F Huang, Xia Van der Bruggen, Bart |
description | Conventional dense thin-film composite (TFC) membranes evince a universally low water permeability, the increase of which typically relies on introducing additional transport channels based on intricate steps within a membrane preparation process. In this study, we reported a novel and simplified procedure for the fabrication of high-performance TFC membranes. Specifically, the dissolution of aqueous monomers in the casting solution was utilized for the following interfacial polymerization (IP). Since the monomers diffused to the water bath during phase inversion, the control of precipitation time enabled an effective regulation of the monomer concentration in the formed polymeric substrates, where the IP reaction was initiated by the addition of the organic phase. The entire and uniform embedment of aqueous monomers inside the substrates contributed to the formation of ultrathin and smooth selective layers. An excellent separation performance (i.e., water permeability: 34.7 L m–2 h–1 bar–1; Na2SO4 rejection: ∼96%) could be attained using two types of aqueous monomers (i.e., piperazine and β-cyclodextrin), demonstrating the effectiveness and universality of this method. Compared to the conventional immersion-based process, this novel procedure shows distinct advantages in reducing monomer usage, shortening the production cycle, and achieving a more superior membrane performance, which is highly promising for large-scale membrane manufacture. |
doi_str_mv | 10.1021/acs.est.9b06426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2335177422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2335177422</sourcerecordid><originalsourceid>FETCH-LOGICAL-a464t-8ebccac42a62eb5b9521d41df3035d2c96e80dec7b437c253cf2695d79cd8cd23</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVoaSZJ19kVQTeB4Il0ZfnRXRg6SSClA0mhO6PHdaNgW1PJLqS_oT86cmaaRaEroct3zrnSIeSUsyVnwC-UiUuM47LWrMihOCALLoFlspL8DVkwxkVWi-L7ITmK8ZExBoJV78ih4DUvSpkvyJ9LulbGdUjVYOmdUZ3S6bJWOjijRucHugneoJ0C0tYHev_ghmztup6ufL_10Y1Iv2CvgxowfqI3w4g_wk7oW7p5UBHT8BeGOI_mkBkJbQpVHd347qnH4H6_KE7I21Z1Ed_vz2Pybf35fnWd3X69ulld3mYqL_Ixq1Abo0wOqgDUUtcSuM25bQUT0oKpC6yYRVPqXJQGpDAtFLW0ZW1sZSyIY3K2890G_3NK_9f0LhrsuvQGP8UGhJC8LHOY0Y__oI9-CkPaLlESZA0AVaIudpQJPsaAbbMNrlfhqeGsmYtqUlHNrN4XlRQf9r6T7tG-8n-bScD5DpiVr5n_s3sG4augFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352592228</pqid></control><display><type>article</type><title>A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liu, Yanling ; Zhu, Junyong ; Zheng, Junfeng ; Gao, Xiaoqi ; Wang, Jing ; Wang, Xiaomao ; Xie, Yuefeng F ; Huang, Xia ; Van der Bruggen, Bart</creator><creatorcontrib>Liu, Yanling ; Zhu, Junyong ; Zheng, Junfeng ; Gao, Xiaoqi ; Wang, Jing ; Wang, Xiaomao ; Xie, Yuefeng F ; Huang, Xia ; Van der Bruggen, Bart</creatorcontrib><description>Conventional dense thin-film composite (TFC) membranes evince a universally low water permeability, the increase of which typically relies on introducing additional transport channels based on intricate steps within a membrane preparation process. In this study, we reported a novel and simplified procedure for the fabrication of high-performance TFC membranes. Specifically, the dissolution of aqueous monomers in the casting solution was utilized for the following interfacial polymerization (IP). Since the monomers diffused to the water bath during phase inversion, the control of precipitation time enabled an effective regulation of the monomer concentration in the formed polymeric substrates, where the IP reaction was initiated by the addition of the organic phase. The entire and uniform embedment of aqueous monomers inside the substrates contributed to the formation of ultrathin and smooth selective layers. An excellent separation performance (i.e., water permeability: 34.7 L m–2 h–1 bar–1; Na2SO4 rejection: ∼96%) could be attained using two types of aqueous monomers (i.e., piperazine and β-cyclodextrin), demonstrating the effectiveness and universality of this method. Compared to the conventional immersion-based process, this novel procedure shows distinct advantages in reducing monomer usage, shortening the production cycle, and achieving a more superior membrane performance, which is highly promising for large-scale membrane manufacture.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b06426</identifier><identifier>PMID: 31916754</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cyclodextrins ; Diffusion ; Fabrication ; Inversion ; Membrane permeability ; Membranes ; Membranes, Artificial ; Monomers ; Permeability ; Phase inversion ; Phase shift ; Piperazine ; Polymerization ; Sodium sulfate ; Submerging ; Substrates ; Thin films ; Water ; Water baths ; β-Cyclodextrin</subject><ispartof>Environmental science & technology, 2020-02, Vol.54 (3), p.1946-1954</ispartof><rights>Copyright American Chemical Society Feb 4, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a464t-8ebccac42a62eb5b9521d41df3035d2c96e80dec7b437c253cf2695d79cd8cd23</citedby><cites>FETCH-LOGICAL-a464t-8ebccac42a62eb5b9521d41df3035d2c96e80dec7b437c253cf2695d79cd8cd23</cites><orcidid>0000-0002-1200-715X ; 0000-0003-2907-3951 ; 0000-0003-4076-1464 ; 0000-0003-0856-9632 ; 0000-0001-8549-852X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b06426$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b06426$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31916754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yanling</creatorcontrib><creatorcontrib>Zhu, Junyong</creatorcontrib><creatorcontrib>Zheng, Junfeng</creatorcontrib><creatorcontrib>Gao, Xiaoqi</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Xiaomao</creatorcontrib><creatorcontrib>Xie, Yuefeng F</creatorcontrib><creatorcontrib>Huang, Xia</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><title>A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Conventional dense thin-film composite (TFC) membranes evince a universally low water permeability, the increase of which typically relies on introducing additional transport channels based on intricate steps within a membrane preparation process. In this study, we reported a novel and simplified procedure for the fabrication of high-performance TFC membranes. Specifically, the dissolution of aqueous monomers in the casting solution was utilized for the following interfacial polymerization (IP). Since the monomers diffused to the water bath during phase inversion, the control of precipitation time enabled an effective regulation of the monomer concentration in the formed polymeric substrates, where the IP reaction was initiated by the addition of the organic phase. The entire and uniform embedment of aqueous monomers inside the substrates contributed to the formation of ultrathin and smooth selective layers. An excellent separation performance (i.e., water permeability: 34.7 L m–2 h–1 bar–1; Na2SO4 rejection: ∼96%) could be attained using two types of aqueous monomers (i.e., piperazine and β-cyclodextrin), demonstrating the effectiveness and universality of this method. Compared to the conventional immersion-based process, this novel procedure shows distinct advantages in reducing monomer usage, shortening the production cycle, and achieving a more superior membrane performance, which is highly promising for large-scale membrane manufacture.</description><subject>Cyclodextrins</subject><subject>Diffusion</subject><subject>Fabrication</subject><subject>Inversion</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Monomers</subject><subject>Permeability</subject><subject>Phase inversion</subject><subject>Phase shift</subject><subject>Piperazine</subject><subject>Polymerization</subject><subject>Sodium sulfate</subject><subject>Submerging</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Water</subject><subject>Water baths</subject><subject>β-Cyclodextrin</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtr3DAUhUVoaSZJ19kVQTeB4Il0ZfnRXRg6SSClA0mhO6PHdaNgW1PJLqS_oT86cmaaRaEroct3zrnSIeSUsyVnwC-UiUuM47LWrMihOCALLoFlspL8DVkwxkVWi-L7ITmK8ZExBoJV78ih4DUvSpkvyJ9LulbGdUjVYOmdUZ3S6bJWOjijRucHugneoJ0C0tYHev_ghmztup6ufL_10Y1Iv2CvgxowfqI3w4g_wk7oW7p5UBHT8BeGOI_mkBkJbQpVHd347qnH4H6_KE7I21Z1Ed_vz2Pybf35fnWd3X69ulld3mYqL_Ixq1Abo0wOqgDUUtcSuM25bQUT0oKpC6yYRVPqXJQGpDAtFLW0ZW1sZSyIY3K2890G_3NK_9f0LhrsuvQGP8UGhJC8LHOY0Y__oI9-CkPaLlESZA0AVaIudpQJPsaAbbMNrlfhqeGsmYtqUlHNrN4XlRQf9r6T7tG-8n-bScD5DpiVr5n_s3sG4augFw</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Liu, Yanling</creator><creator>Zhu, Junyong</creator><creator>Zheng, Junfeng</creator><creator>Gao, Xiaoqi</creator><creator>Wang, Jing</creator><creator>Wang, Xiaomao</creator><creator>Xie, Yuefeng F</creator><creator>Huang, Xia</creator><creator>Van der Bruggen, Bart</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1200-715X</orcidid><orcidid>https://orcid.org/0000-0003-2907-3951</orcidid><orcidid>https://orcid.org/0000-0003-4076-1464</orcidid><orcidid>https://orcid.org/0000-0003-0856-9632</orcidid><orcidid>https://orcid.org/0000-0001-8549-852X</orcidid></search><sort><creationdate>20200204</creationdate><title>A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization</title><author>Liu, Yanling ; Zhu, Junyong ; Zheng, Junfeng ; Gao, Xiaoqi ; Wang, Jing ; Wang, Xiaomao ; Xie, Yuefeng F ; Huang, Xia ; Van der Bruggen, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a464t-8ebccac42a62eb5b9521d41df3035d2c96e80dec7b437c253cf2695d79cd8cd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cyclodextrins</topic><topic>Diffusion</topic><topic>Fabrication</topic><topic>Inversion</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Monomers</topic><topic>Permeability</topic><topic>Phase inversion</topic><topic>Phase shift</topic><topic>Piperazine</topic><topic>Polymerization</topic><topic>Sodium sulfate</topic><topic>Submerging</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Water</topic><topic>Water baths</topic><topic>β-Cyclodextrin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanling</creatorcontrib><creatorcontrib>Zhu, Junyong</creatorcontrib><creatorcontrib>Zheng, Junfeng</creatorcontrib><creatorcontrib>Gao, Xiaoqi</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Xiaomao</creatorcontrib><creatorcontrib>Xie, Yuefeng F</creatorcontrib><creatorcontrib>Huang, Xia</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanling</au><au>Zhu, Junyong</au><au>Zheng, Junfeng</au><au>Gao, Xiaoqi</au><au>Wang, Jing</au><au>Wang, Xiaomao</au><au>Xie, Yuefeng F</au><au>Huang, Xia</au><au>Van der Bruggen, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>1946</spage><epage>1954</epage><pages>1946-1954</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Conventional dense thin-film composite (TFC) membranes evince a universally low water permeability, the increase of which typically relies on introducing additional transport channels based on intricate steps within a membrane preparation process. In this study, we reported a novel and simplified procedure for the fabrication of high-performance TFC membranes. Specifically, the dissolution of aqueous monomers in the casting solution was utilized for the following interfacial polymerization (IP). Since the monomers diffused to the water bath during phase inversion, the control of precipitation time enabled an effective regulation of the monomer concentration in the formed polymeric substrates, where the IP reaction was initiated by the addition of the organic phase. The entire and uniform embedment of aqueous monomers inside the substrates contributed to the formation of ultrathin and smooth selective layers. An excellent separation performance (i.e., water permeability: 34.7 L m–2 h–1 bar–1; Na2SO4 rejection: ∼96%) could be attained using two types of aqueous monomers (i.e., piperazine and β-cyclodextrin), demonstrating the effectiveness and universality of this method. Compared to the conventional immersion-based process, this novel procedure shows distinct advantages in reducing monomer usage, shortening the production cycle, and achieving a more superior membrane performance, which is highly promising for large-scale membrane manufacture.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31916754</pmid><doi>10.1021/acs.est.9b06426</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1200-715X</orcidid><orcidid>https://orcid.org/0000-0003-2907-3951</orcidid><orcidid>https://orcid.org/0000-0003-4076-1464</orcidid><orcidid>https://orcid.org/0000-0003-0856-9632</orcidid><orcidid>https://orcid.org/0000-0001-8549-852X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-02, Vol.54 (3), p.1946-1954 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2335177422 |
source | MEDLINE; ACS Publications |
subjects | Cyclodextrins Diffusion Fabrication Inversion Membrane permeability Membranes Membranes, Artificial Monomers Permeability Phase inversion Phase shift Piperazine Polymerization Sodium sulfate Submerging Substrates Thin films Water Water baths β-Cyclodextrin |
title | A Facile and Scalable Fabrication Procedure for Thin-Film Composite Membranes: Integration of Phase Inversion and Interfacial Polymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Facile%20and%20Scalable%20Fabrication%20Procedure%20for%20Thin-Film%20Composite%20Membranes:%20Integration%20of%20Phase%20Inversion%20and%20Interfacial%20Polymerization&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Liu,%20Yanling&rft.date=2020-02-04&rft.volume=54&rft.issue=3&rft.spage=1946&rft.epage=1954&rft.pages=1946-1954&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b06426&rft_dat=%3Cproquest_cross%3E2335177422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352592228&rft_id=info:pmid/31916754&rfr_iscdi=true |