Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition

KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma 1 , 2 . KRAS(G12C) inhibitors 3 , 4 are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-01, Vol.577 (7790), p.421-425
Hauptverfasser: Xue, Jenny Y., Zhao, Yulei, Aronowitz, Jordan, Mai, Trang T., Vides, Alberto, Qeriqi, Besnik, Kim, Dongsung, Li, Chuanchuan, de Stanchina, Elisa, Mazutis, Linas, Risso, Davide, Lito, Piro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 7790
container_start_page 421
container_title Nature (London)
container_volume 577
creator Xue, Jenny Y.
Zhao, Yulei
Aronowitz, Jordan
Mai, Trang T.
Vides, Alberto
Qeriqi, Besnik
Kim, Dongsung
Li, Chuanchuan
de Stanchina, Elisa
Mazutis, Linas
Risso, Davide
Lito, Piro
description KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma 1 , 2 . KRAS(G12C) inhibitors 3 , 4 are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation 4 – 6 , and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes—or cells in which these changes are pharmacologically inhibited—remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic. Populations of KRAS(G12C)-mutant cancer cells can rapidly bypass the effects of treatment with KRAS(G12C) inhibitors because a subset of cells escapes drug-induced quiescence by producing new KRAS(G12C) that is maintained in its active, drug-insensitive state.
doi_str_mv 10.1038/s41586-019-1884-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2335167010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A648895950</galeid><sourcerecordid>A648895950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-40ad7fc4a0fa2a728d1451be0411de7701262940eb9191a09b611ba4cab155293</originalsourceid><addsrcrecordid>eNp90tFr1DAcB_Agijunf4AvUtzLxsjML03b5PE4dI4NhdvEx5Cm6ZnRS7qkhfO_N7VzeHBKHkp--fx-pO0XobdALoDk_ENkUPASExAYOGd49wwtgFUlZiWvnqMFIZRjwvPyCL2K8Z4QUkDFXqKjHAQUeSUW6Hqtettkzjs8Otv6sM1Uo_pBDda7bPCZ9m6q_t7j2BttW6uz6_Xy9vQS6Ooss-6Hre10_Bq9aFUXzZvH5zH69unj3eozvvl6ebVa3mBdCjpgRlRTtZop0iqqKsobYAXUhjCAxlQVAVpSwYipRbqmIqIuAWrFtKqhKKjIj9HpPLcP_mE0cZBbG7XpOuWMH6OkeV5AmeaQRE9mulGdkTa9yhCUnrhcloxzUYhiUviA2hhnguq8M61N5T3__oDXvX2Qf6OLAyitxmytPjj1bK8hmcHsho0aY5RXt-t9e_5vu7z7vvqyr2HWOvgYg2llH-xWhZ8SiJySJOckyZQkOSVJ7lLPu8ePPNZb0zx1_IlOAnQGMR25jQny3o_BpR__n6m_AOsAzfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335167010</pqid></control><display><type>article</type><title>Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Xue, Jenny Y. ; Zhao, Yulei ; Aronowitz, Jordan ; Mai, Trang T. ; Vides, Alberto ; Qeriqi, Besnik ; Kim, Dongsung ; Li, Chuanchuan ; de Stanchina, Elisa ; Mazutis, Linas ; Risso, Davide ; Lito, Piro</creator><creatorcontrib>Xue, Jenny Y. ; Zhao, Yulei ; Aronowitz, Jordan ; Mai, Trang T. ; Vides, Alberto ; Qeriqi, Besnik ; Kim, Dongsung ; Li, Chuanchuan ; de Stanchina, Elisa ; Mazutis, Linas ; Risso, Davide ; Lito, Piro</creatorcontrib><description>KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma 1 , 2 . KRAS(G12C) inhibitors 3 , 4 are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation 4 – 6 , and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes—or cells in which these changes are pharmacologically inhibited—remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic. Populations of KRAS(G12C)-mutant cancer cells can rapidly bypass the effects of treatment with KRAS(G12C) inhibitors because a subset of cells escapes drug-induced quiescence by producing new KRAS(G12C) that is maintained in its active, drug-insensitive state.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1884-x</identifier><identifier>PMID: 31915379</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 38 ; 38/35 ; 631/67/1059/2326 ; 631/67/1059/602 ; 631/67/1612/1350 ; 631/67/2329 ; 631/80/86/2368 ; 96/106 ; 96/109 ; 96/31 ; Adaptation, Biological ; Analysis ; Cancer cells ; Cell Line, Tumor ; Control ; Drug therapy ; Enzyme Inhibitors - pharmacology ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Gene mutations ; Genetic aspects ; Humanities and Social Sciences ; Humans ; Lung cancer ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; multidisciplinary ; Mutation ; Oncogenes ; Proto-Oncogene Proteins p21(ras) - antagonists &amp; inhibitors ; Proto-Oncogene Proteins p21(ras) - genetics ; Proto-Oncogene Proteins p21(ras) - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction - drug effects</subject><ispartof>Nature (London), 2020-01, Vol.577 (7790), p.421-425</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-40ad7fc4a0fa2a728d1451be0411de7701262940eb9191a09b611ba4cab155293</citedby><cites>FETCH-LOGICAL-c692t-40ad7fc4a0fa2a728d1451be0411de7701262940eb9191a09b611ba4cab155293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1884-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1884-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31915379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Jenny Y.</creatorcontrib><creatorcontrib>Zhao, Yulei</creatorcontrib><creatorcontrib>Aronowitz, Jordan</creatorcontrib><creatorcontrib>Mai, Trang T.</creatorcontrib><creatorcontrib>Vides, Alberto</creatorcontrib><creatorcontrib>Qeriqi, Besnik</creatorcontrib><creatorcontrib>Kim, Dongsung</creatorcontrib><creatorcontrib>Li, Chuanchuan</creatorcontrib><creatorcontrib>de Stanchina, Elisa</creatorcontrib><creatorcontrib>Mazutis, Linas</creatorcontrib><creatorcontrib>Risso, Davide</creatorcontrib><creatorcontrib>Lito, Piro</creatorcontrib><title>Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma 1 , 2 . KRAS(G12C) inhibitors 3 , 4 are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation 4 – 6 , and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes—or cells in which these changes are pharmacologically inhibited—remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic. Populations of KRAS(G12C)-mutant cancer cells can rapidly bypass the effects of treatment with KRAS(G12C) inhibitors because a subset of cells escapes drug-induced quiescence by producing new KRAS(G12C) that is maintained in its active, drug-insensitive state.</description><subject>13/1</subject><subject>38</subject><subject>38/35</subject><subject>631/67/1059/2326</subject><subject>631/67/1059/602</subject><subject>631/67/1612/1350</subject><subject>631/67/2329</subject><subject>631/80/86/2368</subject><subject>96/106</subject><subject>96/109</subject><subject>96/31</subject><subject>Adaptation, Biological</subject><subject>Analysis</subject><subject>Cancer cells</subject><subject>Cell Line, Tumor</subject><subject>Control</subject><subject>Drug therapy</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Oncogenes</subject><subject>Proto-Oncogene Proteins p21(ras) - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - drug effects</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90tFr1DAcB_Agijunf4AvUtzLxsjML03b5PE4dI4NhdvEx5Cm6ZnRS7qkhfO_N7VzeHBKHkp--fx-pO0XobdALoDk_ENkUPASExAYOGd49wwtgFUlZiWvnqMFIZRjwvPyCL2K8Z4QUkDFXqKjHAQUeSUW6Hqtettkzjs8Otv6sM1Uo_pBDda7bPCZ9m6q_t7j2BttW6uz6_Xy9vQS6Ooss-6Hre10_Bq9aFUXzZvH5zH69unj3eozvvl6ebVa3mBdCjpgRlRTtZop0iqqKsobYAXUhjCAxlQVAVpSwYipRbqmIqIuAWrFtKqhKKjIj9HpPLcP_mE0cZBbG7XpOuWMH6OkeV5AmeaQRE9mulGdkTa9yhCUnrhcloxzUYhiUviA2hhnguq8M61N5T3__oDXvX2Qf6OLAyitxmytPjj1bK8hmcHsho0aY5RXt-t9e_5vu7z7vvqyr2HWOvgYg2llH-xWhZ8SiJySJOckyZQkOSVJ7lLPu8ePPNZb0zx1_IlOAnQGMR25jQny3o_BpR__n6m_AOsAzfE</recordid><startdate>20200116</startdate><enddate>20200116</enddate><creator>Xue, Jenny Y.</creator><creator>Zhao, Yulei</creator><creator>Aronowitz, Jordan</creator><creator>Mai, Trang T.</creator><creator>Vides, Alberto</creator><creator>Qeriqi, Besnik</creator><creator>Kim, Dongsung</creator><creator>Li, Chuanchuan</creator><creator>de Stanchina, Elisa</creator><creator>Mazutis, Linas</creator><creator>Risso, Davide</creator><creator>Lito, Piro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>7X8</scope></search><sort><creationdate>20200116</creationdate><title>Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition</title><author>Xue, Jenny Y. ; Zhao, Yulei ; Aronowitz, Jordan ; Mai, Trang T. ; Vides, Alberto ; Qeriqi, Besnik ; Kim, Dongsung ; Li, Chuanchuan ; de Stanchina, Elisa ; Mazutis, Linas ; Risso, Davide ; Lito, Piro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-40ad7fc4a0fa2a728d1451be0411de7701262940eb9191a09b611ba4cab155293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>38</topic><topic>38/35</topic><topic>631/67/1059/2326</topic><topic>631/67/1059/602</topic><topic>631/67/1612/1350</topic><topic>631/67/2329</topic><topic>631/80/86/2368</topic><topic>96/106</topic><topic>96/109</topic><topic>96/31</topic><topic>Adaptation, Biological</topic><topic>Analysis</topic><topic>Cancer cells</topic><topic>Cell Line, Tumor</topic><topic>Control</topic><topic>Drug therapy</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Oncogenes</topic><topic>Proto-Oncogene Proteins p21(ras) - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Jenny Y.</creatorcontrib><creatorcontrib>Zhao, Yulei</creatorcontrib><creatorcontrib>Aronowitz, Jordan</creatorcontrib><creatorcontrib>Mai, Trang T.</creatorcontrib><creatorcontrib>Vides, Alberto</creatorcontrib><creatorcontrib>Qeriqi, Besnik</creatorcontrib><creatorcontrib>Kim, Dongsung</creatorcontrib><creatorcontrib>Li, Chuanchuan</creatorcontrib><creatorcontrib>de Stanchina, Elisa</creatorcontrib><creatorcontrib>Mazutis, Linas</creatorcontrib><creatorcontrib>Risso, Davide</creatorcontrib><creatorcontrib>Lito, Piro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Jenny Y.</au><au>Zhao, Yulei</au><au>Aronowitz, Jordan</au><au>Mai, Trang T.</au><au>Vides, Alberto</au><au>Qeriqi, Besnik</au><au>Kim, Dongsung</au><au>Li, Chuanchuan</au><au>de Stanchina, Elisa</au><au>Mazutis, Linas</au><au>Risso, Davide</au><au>Lito, Piro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-01-16</date><risdate>2020</risdate><volume>577</volume><issue>7790</issue><spage>421</spage><epage>425</epage><pages>421-425</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma 1 , 2 . KRAS(G12C) inhibitors 3 , 4 are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation 4 – 6 , and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes—or cells in which these changes are pharmacologically inhibited—remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic. Populations of KRAS(G12C)-mutant cancer cells can rapidly bypass the effects of treatment with KRAS(G12C) inhibitors because a subset of cells escapes drug-induced quiescence by producing new KRAS(G12C) that is maintained in its active, drug-insensitive state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31915379</pmid><doi>10.1038/s41586-019-1884-x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-01, Vol.577 (7790), p.421-425
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2335167010
source MEDLINE; SpringerLink Journals; Nature
subjects 13/1
38
38/35
631/67/1059/2326
631/67/1059/602
631/67/1612/1350
631/67/2329
631/80/86/2368
96/106
96/109
96/31
Adaptation, Biological
Analysis
Cancer cells
Cell Line, Tumor
Control
Drug therapy
Enzyme Inhibitors - pharmacology
ErbB Receptors - genetics
ErbB Receptors - metabolism
Gene mutations
Genetic aspects
Humanities and Social Sciences
Humans
Lung cancer
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
multidisciplinary
Mutation
Oncogenes
Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors
Proto-Oncogene Proteins p21(ras) - genetics
Proto-Oncogene Proteins p21(ras) - metabolism
Science
Science (multidisciplinary)
Signal Transduction - drug effects
title Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20non-uniform%20adaptation%20to%20conformation-specific%20KRAS(G12C)%20inhibition&rft.jtitle=Nature%20(London)&rft.au=Xue,%20Jenny%20Y.&rft.date=2020-01-16&rft.volume=577&rft.issue=7790&rft.spage=421&rft.epage=425&rft.pages=421-425&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1884-x&rft_dat=%3Cgale_proqu%3EA648895950%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335167010&rft_id=info:pmid/31915379&rft_galeid=A648895950&rfr_iscdi=true