Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow

Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Comput. Phys.; (United States) 1983-07, Vol.51 (1), p.28-64
Hauptverfasser: Menikoff, Ralph, Zemach, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1
container_start_page 28
container_title J. Comput. Phys.; (United States)
container_volume 51
creator Menikoff, Ralph
Zemach, Charles
description Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a prototype for a system of theoretical and numerical techniques exploiting complex variable theory and high-order quadrature methods.
doi_str_mv 10.1016/0021-9991(83)90080-3
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_23349454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999183900803</els_id><sourcerecordid>23349454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-21fc1946fb031d46b035e7becf25c59499333a2b997f97234620f5c2676da31e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMMiInpYzddmNxdBil9QFKSeQ5qd2Mh2U5Ndpf_erC09epmZwDOTlwehU4KvCSbiBmNKcikluazYlcS4wjnbQyOCJc5pScQ-Gu2QQ3QU4ydOUMGrEXp50-sG3Mcin6XBh8y1sdNz17hunem2zroFZH2EzNvM-Nb6sNRNttSrmNmBriE9bdO7OlX_c4wOrG4inGz7GL0_3M8mT_n09fF5cjfNDZOkyymxhkgu7BwzUnORWgHlHIylhSkkl5IxpulcytLKkjIuKLaFoaIUtWYE2Bidbe762DkVjevALFK-FkynCi4kFVWCLjbQKvivHmKnli4aaBrdgu-jooxxyQueQL4BTfAxBrBqFdxSh7UiWA2G1aBPDfpUxdSfYcXS2vn2vo5GNzbo1ri425WMUkqGGLcbDJKQbwdhyAutgdqFIW7t3f___AL_M410</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23349454</pqid></control><display><type>article</type><title>Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow</title><source>Access via ScienceDirect (Elsevier)</source><creator>Menikoff, Ralph ; Zemach, Charles</creator><creatorcontrib>Menikoff, Ralph ; Zemach, Charles ; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><description>Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a prototype for a system of theoretical and numerical techniques exploiting complex variable theory and high-order quadrature methods.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(83)90080-3</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>640410 - Fluid Physics- General Fluid Dynamics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONFORMAL MAPPING ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; Fluid dynamics ; FLUID FLOW ; FUNCTIONS ; Fundamental areas of phenomenology (including applications) ; GREEN FUNCTION ; Hydrodynamic stability ; IDEAL FLOW ; INSTABILITY ; MAPPING ; NUMERICAL SOLUTION ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; RAYLEIGH-TAYLOR INSTABILITY ; TOPOLOGICAL MAPPING ; TRANSFORMATIONS ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>J. Comput. Phys.; (United States), 1983-07, Vol.51 (1), p.28-64</ispartof><rights>1983</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-21fc1946fb031d46b035e7becf25c59499333a2b997f97234620f5c2676da31e3</citedby><cites>FETCH-LOGICAL-c391t-21fc1946fb031d46b035e7becf25c59499333a2b997f97234620f5c2676da31e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(83)90080-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9322218$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5469268$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Menikoff, Ralph</creatorcontrib><creatorcontrib>Zemach, Charles</creatorcontrib><creatorcontrib>Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><title>Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow</title><title>J. Comput. Phys.; (United States)</title><description>Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a prototype for a system of theoretical and numerical techniques exploiting complex variable theory and high-order quadrature methods.</description><subject>640410 - Fluid Physics- General Fluid Dynamics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONFORMAL MAPPING</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>FLUID FLOW</subject><subject>FUNCTIONS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>GREEN FUNCTION</subject><subject>Hydrodynamic stability</subject><subject>IDEAL FLOW</subject><subject>INSTABILITY</subject><subject>MAPPING</subject><subject>NUMERICAL SOLUTION</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><subject>TOPOLOGICAL MAPPING</subject><subject>TRANSFORMATIONS</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMMiInpYzddmNxdBil9QFKSeQ5qd2Mh2U5Ndpf_erC09epmZwDOTlwehU4KvCSbiBmNKcikluazYlcS4wjnbQyOCJc5pScQ-Gu2QQ3QU4ydOUMGrEXp50-sG3Mcin6XBh8y1sdNz17hunem2zroFZH2EzNvM-Nb6sNRNttSrmNmBriE9bdO7OlX_c4wOrG4inGz7GL0_3M8mT_n09fF5cjfNDZOkyymxhkgu7BwzUnORWgHlHIylhSkkl5IxpulcytLKkjIuKLaFoaIUtWYE2Bidbe762DkVjevALFK-FkynCi4kFVWCLjbQKvivHmKnli4aaBrdgu-jooxxyQueQL4BTfAxBrBqFdxSh7UiWA2G1aBPDfpUxdSfYcXS2vn2vo5GNzbo1ri425WMUkqGGLcbDJKQbwdhyAutgdqFIW7t3f___AL_M410</recordid><startdate>19830701</startdate><enddate>19830701</enddate><creator>Menikoff, Ralph</creator><creator>Zemach, Charles</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19830701</creationdate><title>Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow</title><author>Menikoff, Ralph ; Zemach, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-21fc1946fb031d46b035e7becf25c59499333a2b997f97234620f5c2676da31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>640410 - Fluid Physics- General Fluid Dynamics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONFORMAL MAPPING</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>FLUID FLOW</topic><topic>FUNCTIONS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>GREEN FUNCTION</topic><topic>Hydrodynamic stability</topic><topic>IDEAL FLOW</topic><topic>INSTABILITY</topic><topic>MAPPING</topic><topic>NUMERICAL SOLUTION</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><topic>TOPOLOGICAL MAPPING</topic><topic>TRANSFORMATIONS</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menikoff, Ralph</creatorcontrib><creatorcontrib>Zemach, Charles</creatorcontrib><creatorcontrib>Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>J. Comput. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menikoff, Ralph</au><au>Zemach, Charles</au><aucorp>Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow</atitle><jtitle>J. Comput. Phys.; (United States)</jtitle><date>1983-07-01</date><risdate>1983</risdate><volume>51</volume><issue>1</issue><spage>28</spage><epage>64</epage><pages>28-64</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a prototype for a system of theoretical and numerical techniques exploiting complex variable theory and high-order quadrature methods.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(83)90080-3</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof J. Comput. Phys.; (United States), 1983-07, Vol.51 (1), p.28-64
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_23349454
source Access via ScienceDirect (Elsevier)
subjects 640410 - Fluid Physics- General Fluid Dynamics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CONFORMAL MAPPING
DIFFERENTIAL EQUATIONS
EQUATIONS
EQUATIONS OF MOTION
Exact sciences and technology
Fluid dynamics
FLUID FLOW
FUNCTIONS
Fundamental areas of phenomenology (including applications)
GREEN FUNCTION
Hydrodynamic stability
IDEAL FLOW
INSTABILITY
MAPPING
NUMERICAL SOLUTION
PARTIAL DIFFERENTIAL EQUATIONS
Physics
RAYLEIGH-TAYLOR INSTABILITY
TOPOLOGICAL MAPPING
TRANSFORMATIONS
TWO-DIMENSIONAL CALCULATIONS
title Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rayleigh-Taylor%20instability%20and%20the%20use%20of%20conformal%20maps%20for%20ideal%20fluid%20flow&rft.jtitle=J.%20Comput.%20Phys.;%20(United%20States)&rft.au=Menikoff,%20Ralph&rft.aucorp=Theoretical%20Division,%20Los%20Alamos%20National%20Laboratory,%20Los%20Alamos,%20New%20Mexico%2087545&rft.date=1983-07-01&rft.volume=51&rft.issue=1&rft.spage=28&rft.epage=64&rft.pages=28-64&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(83)90080-3&rft_dat=%3Cproquest_osti_%3E23349454%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23349454&rft_id=info:pmid/&rft_els_id=0021999183900803&rfr_iscdi=true