Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow
Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calc...
Gespeichert in:
Veröffentlicht in: | J. Comput. Phys.; (United States) 1983-07, Vol.51 (1), p.28-64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1 |
container_start_page | 28 |
container_title | J. Comput. Phys.; (United States) |
container_volume | 51 |
creator | Menikoff, Ralph Zemach, Charles |
description | Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a prototype for a system of theoretical and numerical techniques exploiting complex variable theory and high-order quadrature methods. |
doi_str_mv | 10.1016/0021-9991(83)90080-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_23349454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999183900803</els_id><sourcerecordid>23349454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-21fc1946fb031d46b035e7becf25c59499333a2b997f97234620f5c2676da31e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMMiInpYzddmNxdBil9QFKSeQ5qd2Mh2U5Ndpf_erC09epmZwDOTlwehU4KvCSbiBmNKcikluazYlcS4wjnbQyOCJc5pScQ-Gu2QQ3QU4ydOUMGrEXp50-sG3Mcin6XBh8y1sdNz17hunem2zroFZH2EzNvM-Nb6sNRNttSrmNmBriE9bdO7OlX_c4wOrG4inGz7GL0_3M8mT_n09fF5cjfNDZOkyymxhkgu7BwzUnORWgHlHIylhSkkl5IxpulcytLKkjIuKLaFoaIUtWYE2Bidbe762DkVjevALFK-FkynCi4kFVWCLjbQKvivHmKnli4aaBrdgu-jooxxyQueQL4BTfAxBrBqFdxSh7UiWA2G1aBPDfpUxdSfYcXS2vn2vo5GNzbo1ri425WMUkqGGLcbDJKQbwdhyAutgdqFIW7t3f___AL_M410</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23349454</pqid></control><display><type>article</type><title>Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow</title><source>Access via ScienceDirect (Elsevier)</source><creator>Menikoff, Ralph ; Zemach, Charles</creator><creatorcontrib>Menikoff, Ralph ; Zemach, Charles ; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><description>Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a prototype for a system of theoretical and numerical techniques exploiting complex variable theory and high-order quadrature methods.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(83)90080-3</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>640410 - Fluid Physics- General Fluid Dynamics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONFORMAL MAPPING ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; Fluid dynamics ; FLUID FLOW ; FUNCTIONS ; Fundamental areas of phenomenology (including applications) ; GREEN FUNCTION ; Hydrodynamic stability ; IDEAL FLOW ; INSTABILITY ; MAPPING ; NUMERICAL SOLUTION ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; RAYLEIGH-TAYLOR INSTABILITY ; TOPOLOGICAL MAPPING ; TRANSFORMATIONS ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>J. Comput. Phys.; (United States), 1983-07, Vol.51 (1), p.28-64</ispartof><rights>1983</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-21fc1946fb031d46b035e7becf25c59499333a2b997f97234620f5c2676da31e3</citedby><cites>FETCH-LOGICAL-c391t-21fc1946fb031d46b035e7becf25c59499333a2b997f97234620f5c2676da31e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(83)90080-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9322218$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5469268$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Menikoff, Ralph</creatorcontrib><creatorcontrib>Zemach, Charles</creatorcontrib><creatorcontrib>Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><title>Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow</title><title>J. Comput. Phys.; (United States)</title><description>Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a prototype for a system of theoretical and numerical techniques exploiting complex variable theory and high-order quadrature methods.</description><subject>640410 - Fluid Physics- General Fluid Dynamics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONFORMAL MAPPING</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>FLUID FLOW</subject><subject>FUNCTIONS</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>GREEN FUNCTION</subject><subject>Hydrodynamic stability</subject><subject>IDEAL FLOW</subject><subject>INSTABILITY</subject><subject>MAPPING</subject><subject>NUMERICAL SOLUTION</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>RAYLEIGH-TAYLOR INSTABILITY</subject><subject>TOPOLOGICAL MAPPING</subject><subject>TRANSFORMATIONS</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMMiInpYzddmNxdBil9QFKSeQ5qd2Mh2U5Ndpf_erC09epmZwDOTlwehU4KvCSbiBmNKcikluazYlcS4wjnbQyOCJc5pScQ-Gu2QQ3QU4ydOUMGrEXp50-sG3Mcin6XBh8y1sdNz17hunem2zroFZH2EzNvM-Nb6sNRNttSrmNmBriE9bdO7OlX_c4wOrG4inGz7GL0_3M8mT_n09fF5cjfNDZOkyymxhkgu7BwzUnORWgHlHIylhSkkl5IxpulcytLKkjIuKLaFoaIUtWYE2Bidbe762DkVjevALFK-FkynCi4kFVWCLjbQKvivHmKnli4aaBrdgu-jooxxyQueQL4BTfAxBrBqFdxSh7UiWA2G1aBPDfpUxdSfYcXS2vn2vo5GNzbo1ri425WMUkqGGLcbDJKQbwdhyAutgdqFIW7t3f___AL_M410</recordid><startdate>19830701</startdate><enddate>19830701</enddate><creator>Menikoff, Ralph</creator><creator>Zemach, Charles</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19830701</creationdate><title>Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow</title><author>Menikoff, Ralph ; Zemach, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-21fc1946fb031d46b035e7becf25c59499333a2b997f97234620f5c2676da31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>640410 - Fluid Physics- General Fluid Dynamics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONFORMAL MAPPING</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>FLUID FLOW</topic><topic>FUNCTIONS</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>GREEN FUNCTION</topic><topic>Hydrodynamic stability</topic><topic>IDEAL FLOW</topic><topic>INSTABILITY</topic><topic>MAPPING</topic><topic>NUMERICAL SOLUTION</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>RAYLEIGH-TAYLOR INSTABILITY</topic><topic>TOPOLOGICAL MAPPING</topic><topic>TRANSFORMATIONS</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menikoff, Ralph</creatorcontrib><creatorcontrib>Zemach, Charles</creatorcontrib><creatorcontrib>Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>J. Comput. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menikoff, Ralph</au><au>Zemach, Charles</au><aucorp>Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow</atitle><jtitle>J. Comput. Phys.; (United States)</jtitle><date>1983-07-01</date><risdate>1983</risdate><volume>51</volume><issue>1</issue><spage>28</spage><epage>64</epage><pages>28-64</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Potential theory permits ideal fluid dynamics to be formulated in terms of boundary motion. In two dimension, the flow can then be found using conformal mapping. The evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a prototype for a system of theoretical and numerical techniques exploiting complex variable theory and high-order quadrature methods.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(83)90080-3</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | J. Comput. Phys.; (United States), 1983-07, Vol.51 (1), p.28-64 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_23349454 |
source | Access via ScienceDirect (Elsevier) |
subjects | 640410 - Fluid Physics- General Fluid Dynamics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CONFORMAL MAPPING DIFFERENTIAL EQUATIONS EQUATIONS EQUATIONS OF MOTION Exact sciences and technology Fluid dynamics FLUID FLOW FUNCTIONS Fundamental areas of phenomenology (including applications) GREEN FUNCTION Hydrodynamic stability IDEAL FLOW INSTABILITY MAPPING NUMERICAL SOLUTION PARTIAL DIFFERENTIAL EQUATIONS Physics RAYLEIGH-TAYLOR INSTABILITY TOPOLOGICAL MAPPING TRANSFORMATIONS TWO-DIMENSIONAL CALCULATIONS |
title | Rayleigh-Taylor instability and the use of conformal maps for ideal fluid flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rayleigh-Taylor%20instability%20and%20the%20use%20of%20conformal%20maps%20for%20ideal%20fluid%20flow&rft.jtitle=J.%20Comput.%20Phys.;%20(United%20States)&rft.au=Menikoff,%20Ralph&rft.aucorp=Theoretical%20Division,%20Los%20Alamos%20National%20Laboratory,%20Los%20Alamos,%20New%20Mexico%2087545&rft.date=1983-07-01&rft.volume=51&rft.issue=1&rft.spage=28&rft.epage=64&rft.pages=28-64&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(83)90080-3&rft_dat=%3Cproquest_osti_%3E23349454%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23349454&rft_id=info:pmid/&rft_els_id=0021999183900803&rfr_iscdi=true |