Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs

Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-03, Vol.16 (9), p.e1905055-n/a
Hauptverfasser: Tan, Sin Yen, Leung, Ziuwin, Wu, Angela Ruohao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e1905055
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Tan, Sin Yen
Leung, Ziuwin
Wu, Angela Ruohao
description Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic‐based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next‐generation vascularized engineered tissues. Tissue perfusion is essential for the survival of the tissue inner core and can be achieved through perfusable vascular networks constructed by employing microfluidic technology. However, there are still challenges in recreating a physiologically realistic microenvironment system in vitro. The biochemical and engineering aspects of the tissue microenvironment that regulate vasculature formation on a microfluidic platform are discussed.
doi_str_mv 10.1002/smll.201905055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2334699139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334699139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-487f25d56a6c2fe1b3aea8a3df5b9f62575cb4b5c4735ceb7e06cbc567af6af33</originalsourceid><addsrcrecordid>eNqFkbFuFDEQhi0EIiHQUiJLNDR3sddr7y0dHIFEuigohLQrr3d8OPLawbNOdFQ8As_Ik-DowiHRpPJY-ubTzPyEvORszhmrDnH0fl4x3jLJpHxE9rniYqYWVft4V3O2R54hXjEmeFU3T8me4C0XcsH2yXQOJoGeXFjTz9826KKPa2e0p0fhxqUYRggT0pNAL92U4lv6AdCtAz3PHpDamOipMylan93gzO-fv95rhIFeajTZ6-R-lM-FQ8xAlzHglLKZ8Dl5YrVHeHH_HpCvH48ulsez1dmnk-W71czUnMlZvWhsJQeptDKVBd4LDXqhxWBl31pVyUaavu6lqRshDfQNMGV6I1WjrdJWiAPyZuu9TvF7Bpy60aEB73WAmLGrhKhVW07RFvT1f-hVzCmU6QrVsLbhtZCFmm-psjJiAttdJzfqtOk46-7y6O7y6HZ5lIZX99rcjzDs8L8BFKDdArfOw-YBXffldLX6J_8DRFqaig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370971435</pqid></control><display><type>article</type><title>Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tan, Sin Yen ; Leung, Ziuwin ; Wu, Angela Ruohao</creator><creatorcontrib>Tan, Sin Yen ; Leung, Ziuwin ; Wu, Angela Ruohao</creatorcontrib><description>Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic‐based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next‐generation vascularized engineered tissues. Tissue perfusion is essential for the survival of the tissue inner core and can be achieved through perfusable vascular networks constructed by employing microfluidic technology. However, there are still challenges in recreating a physiologically realistic microenvironment system in vitro. The biochemical and engineering aspects of the tissue microenvironment that regulate vasculature formation on a microfluidic platform are discussed.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201905055</identifier><identifier>PMID: 31913580</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>biochemistry ; biomechanics ; Coculture Techniques ; Computational fluid dynamics ; Construction engineering ; Fluid flow ; Growth factors ; Humans ; in vitro models ; Microfluidics ; Microfluidics - methods ; Nanotechnology ; Neovascularization, Pathologic - pathology ; Physiology ; Shear stress ; tissue engineering ; Tissue Engineering - methods ; vasculatures</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (9), p.e1905055-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-487f25d56a6c2fe1b3aea8a3df5b9f62575cb4b5c4735ceb7e06cbc567af6af33</citedby><cites>FETCH-LOGICAL-c4105-487f25d56a6c2fe1b3aea8a3df5b9f62575cb4b5c4735ceb7e06cbc567af6af33</cites><orcidid>0000-0002-3531-4830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201905055$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201905055$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31913580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Sin Yen</creatorcontrib><creatorcontrib>Leung, Ziuwin</creatorcontrib><creatorcontrib>Wu, Angela Ruohao</creatorcontrib><title>Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic‐based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next‐generation vascularized engineered tissues. Tissue perfusion is essential for the survival of the tissue inner core and can be achieved through perfusable vascular networks constructed by employing microfluidic technology. However, there are still challenges in recreating a physiologically realistic microenvironment system in vitro. The biochemical and engineering aspects of the tissue microenvironment that regulate vasculature formation on a microfluidic platform are discussed.</description><subject>biochemistry</subject><subject>biomechanics</subject><subject>Coculture Techniques</subject><subject>Computational fluid dynamics</subject><subject>Construction engineering</subject><subject>Fluid flow</subject><subject>Growth factors</subject><subject>Humans</subject><subject>in vitro models</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Nanotechnology</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Physiology</subject><subject>Shear stress</subject><subject>tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>vasculatures</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFuFDEQhi0EIiHQUiJLNDR3sddr7y0dHIFEuigohLQrr3d8OPLawbNOdFQ8As_Ik-DowiHRpPJY-ubTzPyEvORszhmrDnH0fl4x3jLJpHxE9rniYqYWVft4V3O2R54hXjEmeFU3T8me4C0XcsH2yXQOJoGeXFjTz9826KKPa2e0p0fhxqUYRggT0pNAL92U4lv6AdCtAz3PHpDamOipMylan93gzO-fv95rhIFeajTZ6-R-lM-FQ8xAlzHglLKZ8Dl5YrVHeHH_HpCvH48ulsez1dmnk-W71czUnMlZvWhsJQeptDKVBd4LDXqhxWBl31pVyUaavu6lqRshDfQNMGV6I1WjrdJWiAPyZuu9TvF7Bpy60aEB73WAmLGrhKhVW07RFvT1f-hVzCmU6QrVsLbhtZCFmm-psjJiAttdJzfqtOk46-7y6O7y6HZ5lIZX99rcjzDs8L8BFKDdArfOw-YBXffldLX6J_8DRFqaig</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Tan, Sin Yen</creator><creator>Leung, Ziuwin</creator><creator>Wu, Angela Ruohao</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3531-4830</orcidid></search><sort><creationdate>20200301</creationdate><title>Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs</title><author>Tan, Sin Yen ; Leung, Ziuwin ; Wu, Angela Ruohao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-487f25d56a6c2fe1b3aea8a3df5b9f62575cb4b5c4735ceb7e06cbc567af6af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biochemistry</topic><topic>biomechanics</topic><topic>Coculture Techniques</topic><topic>Computational fluid dynamics</topic><topic>Construction engineering</topic><topic>Fluid flow</topic><topic>Growth factors</topic><topic>Humans</topic><topic>in vitro models</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Nanotechnology</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Physiology</topic><topic>Shear stress</topic><topic>tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>vasculatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Sin Yen</creatorcontrib><creatorcontrib>Leung, Ziuwin</creatorcontrib><creatorcontrib>Wu, Angela Ruohao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Sin Yen</au><au>Leung, Ziuwin</au><au>Wu, Angela Ruohao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>9</issue><spage>e1905055</spage><epage>n/a</epage><pages>e1905055-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic‐based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next‐generation vascularized engineered tissues. Tissue perfusion is essential for the survival of the tissue inner core and can be achieved through perfusable vascular networks constructed by employing microfluidic technology. However, there are still challenges in recreating a physiologically realistic microenvironment system in vitro. The biochemical and engineering aspects of the tissue microenvironment that regulate vasculature formation on a microfluidic platform are discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31913580</pmid><doi>10.1002/smll.201905055</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3531-4830</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (9), p.e1905055-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2334699139
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects biochemistry
biomechanics
Coculture Techniques
Computational fluid dynamics
Construction engineering
Fluid flow
Growth factors
Humans
in vitro models
Microfluidics
Microfluidics - methods
Nanotechnology
Neovascularization, Pathologic - pathology
Physiology
Shear stress
tissue engineering
Tissue Engineering - methods
vasculatures
title Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T05%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recreating%20Physiological%20Environments%20In%20Vitro:%20Design%20Rules%20for%20Microfluidic%E2%80%90Based%20Vascularized%20Tissue%20Constructs&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Tan,%20Sin%20Yen&rft.date=2020-03-01&rft.volume=16&rft.issue=9&rft.spage=e1905055&rft.epage=n/a&rft.pages=e1905055-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201905055&rft_dat=%3Cproquest_cross%3E2334699139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370971435&rft_id=info:pmid/31913580&rfr_iscdi=true