Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs
Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the m...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-03, Vol.16 (9), p.e1905055-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | e1905055 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 16 |
creator | Tan, Sin Yen Leung, Ziuwin Wu, Angela Ruohao |
description | Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic‐based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next‐generation vascularized engineered tissues.
Tissue perfusion is essential for the survival of the tissue inner core and can be achieved through perfusable vascular networks constructed by employing microfluidic technology. However, there are still challenges in recreating a physiologically realistic microenvironment system in vitro. The biochemical and engineering aspects of the tissue microenvironment that regulate vasculature formation on a microfluidic platform are discussed. |
doi_str_mv | 10.1002/smll.201905055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2334699139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334699139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-487f25d56a6c2fe1b3aea8a3df5b9f62575cb4b5c4735ceb7e06cbc567af6af33</originalsourceid><addsrcrecordid>eNqFkbFuFDEQhi0EIiHQUiJLNDR3sddr7y0dHIFEuigohLQrr3d8OPLawbNOdFQ8As_Ik-DowiHRpPJY-ubTzPyEvORszhmrDnH0fl4x3jLJpHxE9rniYqYWVft4V3O2R54hXjEmeFU3T8me4C0XcsH2yXQOJoGeXFjTz9826KKPa2e0p0fhxqUYRggT0pNAL92U4lv6AdCtAz3PHpDamOipMylan93gzO-fv95rhIFeajTZ6-R-lM-FQ8xAlzHglLKZ8Dl5YrVHeHH_HpCvH48ulsez1dmnk-W71czUnMlZvWhsJQeptDKVBd4LDXqhxWBl31pVyUaavu6lqRshDfQNMGV6I1WjrdJWiAPyZuu9TvF7Bpy60aEB73WAmLGrhKhVW07RFvT1f-hVzCmU6QrVsLbhtZCFmm-psjJiAttdJzfqtOk46-7y6O7y6HZ5lIZX99rcjzDs8L8BFKDdArfOw-YBXffldLX6J_8DRFqaig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2370971435</pqid></control><display><type>article</type><title>Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tan, Sin Yen ; Leung, Ziuwin ; Wu, Angela Ruohao</creator><creatorcontrib>Tan, Sin Yen ; Leung, Ziuwin ; Wu, Angela Ruohao</creatorcontrib><description>Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic‐based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next‐generation vascularized engineered tissues.
Tissue perfusion is essential for the survival of the tissue inner core and can be achieved through perfusable vascular networks constructed by employing microfluidic technology. However, there are still challenges in recreating a physiologically realistic microenvironment system in vitro. The biochemical and engineering aspects of the tissue microenvironment that regulate vasculature formation on a microfluidic platform are discussed.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201905055</identifier><identifier>PMID: 31913580</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>biochemistry ; biomechanics ; Coculture Techniques ; Computational fluid dynamics ; Construction engineering ; Fluid flow ; Growth factors ; Humans ; in vitro models ; Microfluidics ; Microfluidics - methods ; Nanotechnology ; Neovascularization, Pathologic - pathology ; Physiology ; Shear stress ; tissue engineering ; Tissue Engineering - methods ; vasculatures</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (9), p.e1905055-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-487f25d56a6c2fe1b3aea8a3df5b9f62575cb4b5c4735ceb7e06cbc567af6af33</citedby><cites>FETCH-LOGICAL-c4105-487f25d56a6c2fe1b3aea8a3df5b9f62575cb4b5c4735ceb7e06cbc567af6af33</cites><orcidid>0000-0002-3531-4830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201905055$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201905055$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31913580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Sin Yen</creatorcontrib><creatorcontrib>Leung, Ziuwin</creatorcontrib><creatorcontrib>Wu, Angela Ruohao</creatorcontrib><title>Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic‐based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next‐generation vascularized engineered tissues.
Tissue perfusion is essential for the survival of the tissue inner core and can be achieved through perfusable vascular networks constructed by employing microfluidic technology. However, there are still challenges in recreating a physiologically realistic microenvironment system in vitro. The biochemical and engineering aspects of the tissue microenvironment that regulate vasculature formation on a microfluidic platform are discussed.</description><subject>biochemistry</subject><subject>biomechanics</subject><subject>Coculture Techniques</subject><subject>Computational fluid dynamics</subject><subject>Construction engineering</subject><subject>Fluid flow</subject><subject>Growth factors</subject><subject>Humans</subject><subject>in vitro models</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Nanotechnology</subject><subject>Neovascularization, Pathologic - pathology</subject><subject>Physiology</subject><subject>Shear stress</subject><subject>tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>vasculatures</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkbFuFDEQhi0EIiHQUiJLNDR3sddr7y0dHIFEuigohLQrr3d8OPLawbNOdFQ8As_Ik-DowiHRpPJY-ubTzPyEvORszhmrDnH0fl4x3jLJpHxE9rniYqYWVft4V3O2R54hXjEmeFU3T8me4C0XcsH2yXQOJoGeXFjTz9826KKPa2e0p0fhxqUYRggT0pNAL92U4lv6AdCtAz3PHpDamOipMylan93gzO-fv95rhIFeajTZ6-R-lM-FQ8xAlzHglLKZ8Dl5YrVHeHH_HpCvH48ulsez1dmnk-W71czUnMlZvWhsJQeptDKVBd4LDXqhxWBl31pVyUaavu6lqRshDfQNMGV6I1WjrdJWiAPyZuu9TvF7Bpy60aEB73WAmLGrhKhVW07RFvT1f-hVzCmU6QrVsLbhtZCFmm-psjJiAttdJzfqtOk46-7y6O7y6HZ5lIZX99rcjzDs8L8BFKDdArfOw-YBXffldLX6J_8DRFqaig</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Tan, Sin Yen</creator><creator>Leung, Ziuwin</creator><creator>Wu, Angela Ruohao</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3531-4830</orcidid></search><sort><creationdate>20200301</creationdate><title>Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs</title><author>Tan, Sin Yen ; Leung, Ziuwin ; Wu, Angela Ruohao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-487f25d56a6c2fe1b3aea8a3df5b9f62575cb4b5c4735ceb7e06cbc567af6af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biochemistry</topic><topic>biomechanics</topic><topic>Coculture Techniques</topic><topic>Computational fluid dynamics</topic><topic>Construction engineering</topic><topic>Fluid flow</topic><topic>Growth factors</topic><topic>Humans</topic><topic>in vitro models</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Nanotechnology</topic><topic>Neovascularization, Pathologic - pathology</topic><topic>Physiology</topic><topic>Shear stress</topic><topic>tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>vasculatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Sin Yen</creatorcontrib><creatorcontrib>Leung, Ziuwin</creatorcontrib><creatorcontrib>Wu, Angela Ruohao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Sin Yen</au><au>Leung, Ziuwin</au><au>Wu, Angela Ruohao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>9</issue><spage>e1905055</spage><epage>n/a</epage><pages>e1905055-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic‐based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next‐generation vascularized engineered tissues.
Tissue perfusion is essential for the survival of the tissue inner core and can be achieved through perfusable vascular networks constructed by employing microfluidic technology. However, there are still challenges in recreating a physiologically realistic microenvironment system in vitro. The biochemical and engineering aspects of the tissue microenvironment that regulate vasculature formation on a microfluidic platform are discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31913580</pmid><doi>10.1002/smll.201905055</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3531-4830</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2020-03, Vol.16 (9), p.e1905055-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2334699139 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | biochemistry biomechanics Coculture Techniques Computational fluid dynamics Construction engineering Fluid flow Growth factors Humans in vitro models Microfluidics Microfluidics - methods Nanotechnology Neovascularization, Pathologic - pathology Physiology Shear stress tissue engineering Tissue Engineering - methods vasculatures |
title | Recreating Physiological Environments In Vitro: Design Rules for Microfluidic‐Based Vascularized Tissue Constructs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T05%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recreating%20Physiological%20Environments%20In%20Vitro:%20Design%20Rules%20for%20Microfluidic%E2%80%90Based%20Vascularized%20Tissue%20Constructs&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Tan,%20Sin%20Yen&rft.date=2020-03-01&rft.volume=16&rft.issue=9&rft.spage=e1905055&rft.epage=n/a&rft.pages=e1905055-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201905055&rft_dat=%3Cproquest_cross%3E2334699139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2370971435&rft_id=info:pmid/31913580&rfr_iscdi=true |