Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells
In recent years, copper(I/II) complexes have emerged as alternative redox shuttles in dye-sensitized solar cells (DSSCs), exhibiting more positive redox potential than iodine- and cobalt-based redox shuttles. In particular, copper(I/II) complexes with 1,10-phenanthroline- or 2,2′-bipyridyl-based l...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2020-01, Vol.59 (1), p.452-459 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 459 |
---|---|
container_issue | 1 |
container_start_page | 452 |
container_title | Inorganic chemistry |
container_volume | 59 |
creator | Higashino, Tomohiro Iiyama, Hitomi Nimura, Shimpei Kurumisawa, Yuma Imahori, Hiroshi |
description | In recent years, copper(I/II) complexes have emerged as alternative redox shuttles in dye-sensitized solar cells (DSSCs), exhibiting more positive redox potential than iodine- and cobalt-based redox shuttles. In particular, copper(I/II) complexes with 1,10-phenanthroline- or 2,2′-bipyridyl-based ligands attained moderate to high power conversion efficiencies (6–11%) with a high open-circuit voltage (V OC) over 1.0 V due to the positive potentials. Although copper(I/II) complexes with 1,10-phenanthroline-based ligands with 2,9-substituents have been developed, the effect of their ligand structures on the photovoltaic performance of DSSCs have not been fully addressed due to limited synthetic access to 1,10-phenanthroline derivatives. In this study, we designed and synthesized a series of copper(I/II) complexes with 1,10-phenanthroline ligands with different substituents at the 2,9-positions: bis(2-n-butyl-1,10-phenanthroline)copper(I/II) ([Cu(bp)2]1+/2+), bis(2-ethyl-9-methyl-1,10-phenanthroline)copper(I/II) ([Cu(emp)2]1+/2+), bis(2,9-diethyl-1,10-phenanthroline)copper(I/II) ([Cu(dep)2]1+/2+), and bis(2,9-diphenyl-1,10-phenanthroline)copper(I/II) ([Cu(dpp)2]1+/2+). The more positive redox potentials of [Cu(emp)2]1+/2+ and [Cu(dep)2]1+/2+, compared to that of bis(2,9-dimethyl-1,10-phenanthroline)copper(I/II) ([Cu(dmp)2]1+/2+), originate from the larger steric hindrance of the ethyl group instead of the methyl group, whereas the redox potential of [Cu(bp)2]1+/2+ is significantly shifted to the negative direction because of the lower steric hindrance of the 2-monosubstituted 1,10-phenanthroline ligands. The efficiency of the DSSC with [Cu(bp)2]1+/2+ (5.90%) is almost comparable to the DSSC with [Cu(dmp)2]1+/2+ (6.29%). In contrast, the DSSCs with [Cu(emp)2]1+/2+ (3.25%), [Cu(dep)2]1+/2+ (2.56%), and [Cu(dpp)2]1+/2+ (2.21%) exhibited lower efficiencies than those with [Cu(dmp)2]1+/2+ and [Cu(bp)2]1+/2+. The difference can be rationalized by the electron collection efficiencies. Considering the similar photovoltaic properties of the DSSCs with [Cu(bp)2]1+/2+ and [Cu(dmp)2]1+/2+, the use of copper(I/II) complexes with 2-monosubstituted 1,10-phenanthroline ligands as the redox shuttle may be useful to improve the short-circuit current density while retaining the rather high V OC value when dyes with a smaller bandgap (i.e., better light harvesting) are developed. |
doi_str_mv | 10.1021/acs.inorgchem.9b02740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2334218709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334218709</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-b780ed0614ae6bf24ad4f441b8eb029ad0c2f106320458acff5112d9be3beb303</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EglL4CaAcuaSsHed1RKU8pEogChK3yHHWNCiJg-0g4NfjqKVXTrbsmdmdj5AzCjMKjF4KaWd1p82bXGM7y0tgKYc9MqExgzCm8LpPJgD-TpMkPyLH1r4DQB7x5JAcRTRjeZxmE9ItlELpAq2CZf0muipYOTNINxi04-Nc9z2a4Akr_RWs1oNzzfjRBY9r7fSnbpyoZfCIRmnTik7iaLr-xnCFna1d_YM-UTfCBHNsGntCDpRoLJ5uzyl5uVk8z-_C5cPt_fxqGQpOUxeWaQZYQUK5wKRUjIuKK85pmaEvmosKJFMUkogBjzMhlYopZVVeYlRiGUE0JReb3N7ojwGtK9raSr-B6FAPtmBRxBnNUg9kSuKNVBptrUFV9KZuhfkuKBQj6sKjLnaoiy1q7zvfjhjKFqud64-tF9CNYPS_68F0vvE_ob9PqJB1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334218709</pqid></control><display><type>article</type><title>Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells</title><source>American Chemical Society Journals</source><creator>Higashino, Tomohiro ; Iiyama, Hitomi ; Nimura, Shimpei ; Kurumisawa, Yuma ; Imahori, Hiroshi</creator><creatorcontrib>Higashino, Tomohiro ; Iiyama, Hitomi ; Nimura, Shimpei ; Kurumisawa, Yuma ; Imahori, Hiroshi</creatorcontrib><description>In recent years, copper(I/II) complexes have emerged as alternative redox shuttles in dye-sensitized solar cells (DSSCs), exhibiting more positive redox potential than iodine- and cobalt-based redox shuttles. In particular, copper(I/II) complexes with 1,10-phenanthroline- or 2,2′-bipyridyl-based ligands attained moderate to high power conversion efficiencies (6–11%) with a high open-circuit voltage (V OC) over 1.0 V due to the positive potentials. Although copper(I/II) complexes with 1,10-phenanthroline-based ligands with 2,9-substituents have been developed, the effect of their ligand structures on the photovoltaic performance of DSSCs have not been fully addressed due to limited synthetic access to 1,10-phenanthroline derivatives. In this study, we designed and synthesized a series of copper(I/II) complexes with 1,10-phenanthroline ligands with different substituents at the 2,9-positions: bis(2-n-butyl-1,10-phenanthroline)copper(I/II) ([Cu(bp)2]1+/2+), bis(2-ethyl-9-methyl-1,10-phenanthroline)copper(I/II) ([Cu(emp)2]1+/2+), bis(2,9-diethyl-1,10-phenanthroline)copper(I/II) ([Cu(dep)2]1+/2+), and bis(2,9-diphenyl-1,10-phenanthroline)copper(I/II) ([Cu(dpp)2]1+/2+). The more positive redox potentials of [Cu(emp)2]1+/2+ and [Cu(dep)2]1+/2+, compared to that of bis(2,9-dimethyl-1,10-phenanthroline)copper(I/II) ([Cu(dmp)2]1+/2+), originate from the larger steric hindrance of the ethyl group instead of the methyl group, whereas the redox potential of [Cu(bp)2]1+/2+ is significantly shifted to the negative direction because of the lower steric hindrance of the 2-monosubstituted 1,10-phenanthroline ligands. The efficiency of the DSSC with [Cu(bp)2]1+/2+ (5.90%) is almost comparable to the DSSC with [Cu(dmp)2]1+/2+ (6.29%). In contrast, the DSSCs with [Cu(emp)2]1+/2+ (3.25%), [Cu(dep)2]1+/2+ (2.56%), and [Cu(dpp)2]1+/2+ (2.21%) exhibited lower efficiencies than those with [Cu(dmp)2]1+/2+ and [Cu(bp)2]1+/2+. The difference can be rationalized by the electron collection efficiencies. Considering the similar photovoltaic properties of the DSSCs with [Cu(bp)2]1+/2+ and [Cu(dmp)2]1+/2+, the use of copper(I/II) complexes with 2-monosubstituted 1,10-phenanthroline ligands as the redox shuttle may be useful to improve the short-circuit current density while retaining the rather high V OC value when dyes with a smaller bandgap (i.e., better light harvesting) are developed.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.9b02740</identifier><identifier>PMID: 31829578</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2020-01, Vol.59 (1), p.452-459</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-b780ed0614ae6bf24ad4f441b8eb029ad0c2f106320458acff5112d9be3beb303</citedby><cites>FETCH-LOGICAL-a417t-b780ed0614ae6bf24ad4f441b8eb029ad0c2f106320458acff5112d9be3beb303</cites><orcidid>0000-0002-9531-8569 ; 0000-0003-3506-5608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.9b02740$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.9b02740$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31829578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Higashino, Tomohiro</creatorcontrib><creatorcontrib>Iiyama, Hitomi</creatorcontrib><creatorcontrib>Nimura, Shimpei</creatorcontrib><creatorcontrib>Kurumisawa, Yuma</creatorcontrib><creatorcontrib>Imahori, Hiroshi</creatorcontrib><title>Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>In recent years, copper(I/II) complexes have emerged as alternative redox shuttles in dye-sensitized solar cells (DSSCs), exhibiting more positive redox potential than iodine- and cobalt-based redox shuttles. In particular, copper(I/II) complexes with 1,10-phenanthroline- or 2,2′-bipyridyl-based ligands attained moderate to high power conversion efficiencies (6–11%) with a high open-circuit voltage (V OC) over 1.0 V due to the positive potentials. Although copper(I/II) complexes with 1,10-phenanthroline-based ligands with 2,9-substituents have been developed, the effect of their ligand structures on the photovoltaic performance of DSSCs have not been fully addressed due to limited synthetic access to 1,10-phenanthroline derivatives. In this study, we designed and synthesized a series of copper(I/II) complexes with 1,10-phenanthroline ligands with different substituents at the 2,9-positions: bis(2-n-butyl-1,10-phenanthroline)copper(I/II) ([Cu(bp)2]1+/2+), bis(2-ethyl-9-methyl-1,10-phenanthroline)copper(I/II) ([Cu(emp)2]1+/2+), bis(2,9-diethyl-1,10-phenanthroline)copper(I/II) ([Cu(dep)2]1+/2+), and bis(2,9-diphenyl-1,10-phenanthroline)copper(I/II) ([Cu(dpp)2]1+/2+). The more positive redox potentials of [Cu(emp)2]1+/2+ and [Cu(dep)2]1+/2+, compared to that of bis(2,9-dimethyl-1,10-phenanthroline)copper(I/II) ([Cu(dmp)2]1+/2+), originate from the larger steric hindrance of the ethyl group instead of the methyl group, whereas the redox potential of [Cu(bp)2]1+/2+ is significantly shifted to the negative direction because of the lower steric hindrance of the 2-monosubstituted 1,10-phenanthroline ligands. The efficiency of the DSSC with [Cu(bp)2]1+/2+ (5.90%) is almost comparable to the DSSC with [Cu(dmp)2]1+/2+ (6.29%). In contrast, the DSSCs with [Cu(emp)2]1+/2+ (3.25%), [Cu(dep)2]1+/2+ (2.56%), and [Cu(dpp)2]1+/2+ (2.21%) exhibited lower efficiencies than those with [Cu(dmp)2]1+/2+ and [Cu(bp)2]1+/2+. The difference can be rationalized by the electron collection efficiencies. Considering the similar photovoltaic properties of the DSSCs with [Cu(bp)2]1+/2+ and [Cu(dmp)2]1+/2+, the use of copper(I/II) complexes with 2-monosubstituted 1,10-phenanthroline ligands as the redox shuttle may be useful to improve the short-circuit current density while retaining the rather high V OC value when dyes with a smaller bandgap (i.e., better light harvesting) are developed.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EglL4CaAcuaSsHed1RKU8pEogChK3yHHWNCiJg-0g4NfjqKVXTrbsmdmdj5AzCjMKjF4KaWd1p82bXGM7y0tgKYc9MqExgzCm8LpPJgD-TpMkPyLH1r4DQB7x5JAcRTRjeZxmE9ItlELpAq2CZf0muipYOTNINxi04-Nc9z2a4Akr_RWs1oNzzfjRBY9r7fSnbpyoZfCIRmnTik7iaLr-xnCFna1d_YM-UTfCBHNsGntCDpRoLJ5uzyl5uVk8z-_C5cPt_fxqGQpOUxeWaQZYQUK5wKRUjIuKK85pmaEvmosKJFMUkogBjzMhlYopZVVeYlRiGUE0JReb3N7ojwGtK9raSr-B6FAPtmBRxBnNUg9kSuKNVBptrUFV9KZuhfkuKBQj6sKjLnaoiy1q7zvfjhjKFqud64-tF9CNYPS_68F0vvE_ob9PqJB1</recordid><startdate>20200106</startdate><enddate>20200106</enddate><creator>Higashino, Tomohiro</creator><creator>Iiyama, Hitomi</creator><creator>Nimura, Shimpei</creator><creator>Kurumisawa, Yuma</creator><creator>Imahori, Hiroshi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9531-8569</orcidid><orcidid>https://orcid.org/0000-0003-3506-5608</orcidid></search><sort><creationdate>20200106</creationdate><title>Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells</title><author>Higashino, Tomohiro ; Iiyama, Hitomi ; Nimura, Shimpei ; Kurumisawa, Yuma ; Imahori, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-b780ed0614ae6bf24ad4f441b8eb029ad0c2f106320458acff5112d9be3beb303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higashino, Tomohiro</creatorcontrib><creatorcontrib>Iiyama, Hitomi</creatorcontrib><creatorcontrib>Nimura, Shimpei</creatorcontrib><creatorcontrib>Kurumisawa, Yuma</creatorcontrib><creatorcontrib>Imahori, Hiroshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higashino, Tomohiro</au><au>Iiyama, Hitomi</au><au>Nimura, Shimpei</au><au>Kurumisawa, Yuma</au><au>Imahori, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2020-01-06</date><risdate>2020</risdate><volume>59</volume><issue>1</issue><spage>452</spage><epage>459</epage><pages>452-459</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>In recent years, copper(I/II) complexes have emerged as alternative redox shuttles in dye-sensitized solar cells (DSSCs), exhibiting more positive redox potential than iodine- and cobalt-based redox shuttles. In particular, copper(I/II) complexes with 1,10-phenanthroline- or 2,2′-bipyridyl-based ligands attained moderate to high power conversion efficiencies (6–11%) with a high open-circuit voltage (V OC) over 1.0 V due to the positive potentials. Although copper(I/II) complexes with 1,10-phenanthroline-based ligands with 2,9-substituents have been developed, the effect of their ligand structures on the photovoltaic performance of DSSCs have not been fully addressed due to limited synthetic access to 1,10-phenanthroline derivatives. In this study, we designed and synthesized a series of copper(I/II) complexes with 1,10-phenanthroline ligands with different substituents at the 2,9-positions: bis(2-n-butyl-1,10-phenanthroline)copper(I/II) ([Cu(bp)2]1+/2+), bis(2-ethyl-9-methyl-1,10-phenanthroline)copper(I/II) ([Cu(emp)2]1+/2+), bis(2,9-diethyl-1,10-phenanthroline)copper(I/II) ([Cu(dep)2]1+/2+), and bis(2,9-diphenyl-1,10-phenanthroline)copper(I/II) ([Cu(dpp)2]1+/2+). The more positive redox potentials of [Cu(emp)2]1+/2+ and [Cu(dep)2]1+/2+, compared to that of bis(2,9-dimethyl-1,10-phenanthroline)copper(I/II) ([Cu(dmp)2]1+/2+), originate from the larger steric hindrance of the ethyl group instead of the methyl group, whereas the redox potential of [Cu(bp)2]1+/2+ is significantly shifted to the negative direction because of the lower steric hindrance of the 2-monosubstituted 1,10-phenanthroline ligands. The efficiency of the DSSC with [Cu(bp)2]1+/2+ (5.90%) is almost comparable to the DSSC with [Cu(dmp)2]1+/2+ (6.29%). In contrast, the DSSCs with [Cu(emp)2]1+/2+ (3.25%), [Cu(dep)2]1+/2+ (2.56%), and [Cu(dpp)2]1+/2+ (2.21%) exhibited lower efficiencies than those with [Cu(dmp)2]1+/2+ and [Cu(bp)2]1+/2+. The difference can be rationalized by the electron collection efficiencies. Considering the similar photovoltaic properties of the DSSCs with [Cu(bp)2]1+/2+ and [Cu(dmp)2]1+/2+, the use of copper(I/II) complexes with 2-monosubstituted 1,10-phenanthroline ligands as the redox shuttle may be useful to improve the short-circuit current density while retaining the rather high V OC value when dyes with a smaller bandgap (i.e., better light harvesting) are developed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31829578</pmid><doi>10.1021/acs.inorgchem.9b02740</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9531-8569</orcidid><orcidid>https://orcid.org/0000-0003-3506-5608</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2020-01, Vol.59 (1), p.452-459 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_2334218709 |
source | American Chemical Society Journals |
title | Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Ligand%20Structures%20of%20Copper%20Redox%20Shuttles%20on%20Photovoltaic%20Performance%20of%20Dye-Sensitized%20Solar%20Cells&rft.jtitle=Inorganic%20chemistry&rft.au=Higashino,%20Tomohiro&rft.date=2020-01-06&rft.volume=59&rft.issue=1&rft.spage=452&rft.epage=459&rft.pages=452-459&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.9b02740&rft_dat=%3Cproquest_cross%3E2334218709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334218709&rft_id=info:pmid/31829578&rfr_iscdi=true |