Comparison of Independent Evolutionary Origins Reveals Both Convergence and Divergence in the Metabolic Mechanisms of Symbiosis

Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3–6]. The transient nature of establishment makes study of symbiotic o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2020-01, Vol.30 (2), p.328-334.e4
Hauptverfasser: Sørensen, Megan E.S., Wood, A. Jamie, Minter, Ewan J.A., Lowe, Chris D., Cameron, Duncan D., Brockhurst, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334.e4
container_issue 2
container_start_page 328
container_title Current biology
container_volume 30
creator Sørensen, Megan E.S.
Wood, A. Jamie
Minter, Ewan J.A.
Lowe, Chris D.
Cameron, Duncan D.
Brockhurst, Michael A.
description Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3–6]. The transient nature of establishment makes study of symbiotic origins difficult, but experimental comparison of independent origins could reveal the degree of convergence in the underpinning mechanisms [7, 8]. We compared the metabolic mechanisms of two independent origins of Paramecium bursaria-Chlorella photosymbiosis [9–11] using a reciprocal metabolomic pulse-chase method. This showed convergent patterns of nutrient exchange and utilization for host-derived nitrogen in the Chlorella genotypes [12, 13] and symbiont-derived carbon in the P. bursaria genotypes [14, 15]. Consistent with a convergent primary nutrient exchange, partner-switched host-symbiont pairings were functional. Direct competition of hosts containing native or recombined symbionts against isogenic symbiont-free hosts showed that the fitness benefits of symbiosis for hosts increased with irradiance but varied by genotype. Global metabolism varied more between the Chlorella than the P. bursaria genotypes and suggested divergent mechanisms of light management. Specifically, the algal symbiont genotypes either produced photo-protective carotenoid pigments at high irradiance or more chlorophyll, resulting in corresponding differences in photosynthetic efficiency and non-photochemical quenching among host-symbiont pairings. These data suggest that the multiple origins of P. bursaria-Chlorella symbiosis use a convergent nutrient exchange, whereas other photosynthetic traits linked to functioning of photosymbiosis have diverged. Although convergence enables partner switching among diverse strains, phenotypic mismatches resulting from divergence of secondary symbiotic traits could mediate host-symbiont specificity in nature. •Paramecium-Chlorella symbiosis has evolved independently multiple times•Independent origins use a convergent nutrient exchange, enabling partner switching•Chlorella genotypes have evolved divergent mechanisms to cope with excess light•Consequent phenotypic mismatches could mediate host-symbiont specificity Sørensen et al. compare multiple independent evolutionary origins of Paramecium-Chlorella symbiosis to reveal the underpinning metabolic mechanisms. Although the independent origins use a convergent nutrient exchange, they have diverged in
doi_str_mv 10.1016/j.cub.2019.11.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2333928885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982219315234</els_id><sourcerecordid>2333928885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-280db499a4523838e92f5600a98a9af83a412f5ed9d8b362ac8f6cee2204127d3</originalsourceid><addsrcrecordid>eNp9kE1v2zAMhoVhxZp2-wG7DDruYlcftiNhpzXt2gAZCmztWZAlulFgS6lkB-ipf30KkuXYiyiSL1-CD0JfKSkpoc3VpjRTWzJCZUlpSWr-Ac2omMuCVFX9Ec2IbEghBWPn6CKlDSGUCdl8QuecSsLmjM3Q2yIMWx1dCh6HDi-9hS3kx4_4dhf6aXTB6_iKH6J7dj7hP7AD3Sd8HcY1XgS_g_gM3gDW3uIbd0qdx-Ma8G8YdRt6Z_LPrLV3aUj7PX9fh9aF5NJndNZlP_hyjJfo6dft4-K-WD3cLRc_V4XhshkLJohtKyl1VTMuuADJurohREuhpe4E1xXNFbDSipY3TBvRNQaAMZIbc8sv0feD7zaGlwnSqAaXDPS99hCmpBjnXDIhRJ2l9CA1MaQUoVPb6IYMQVGi9tzVRmXuas9dUaoy9zzz7Wg_tQPY08R_0Fnw4yCAfOTOQVTJuD0p6yKYUdng3rH_B5UhlME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333928885</pqid></control><display><type>article</type><title>Comparison of Independent Evolutionary Origins Reveals Both Convergence and Divergence in the Metabolic Mechanisms of Symbiosis</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sørensen, Megan E.S. ; Wood, A. Jamie ; Minter, Ewan J.A. ; Lowe, Chris D. ; Cameron, Duncan D. ; Brockhurst, Michael A.</creator><creatorcontrib>Sørensen, Megan E.S. ; Wood, A. Jamie ; Minter, Ewan J.A. ; Lowe, Chris D. ; Cameron, Duncan D. ; Brockhurst, Michael A.</creatorcontrib><description>Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3–6]. The transient nature of establishment makes study of symbiotic origins difficult, but experimental comparison of independent origins could reveal the degree of convergence in the underpinning mechanisms [7, 8]. We compared the metabolic mechanisms of two independent origins of Paramecium bursaria-Chlorella photosymbiosis [9–11] using a reciprocal metabolomic pulse-chase method. This showed convergent patterns of nutrient exchange and utilization for host-derived nitrogen in the Chlorella genotypes [12, 13] and symbiont-derived carbon in the P. bursaria genotypes [14, 15]. Consistent with a convergent primary nutrient exchange, partner-switched host-symbiont pairings were functional. Direct competition of hosts containing native or recombined symbionts against isogenic symbiont-free hosts showed that the fitness benefits of symbiosis for hosts increased with irradiance but varied by genotype. Global metabolism varied more between the Chlorella than the P. bursaria genotypes and suggested divergent mechanisms of light management. Specifically, the algal symbiont genotypes either produced photo-protective carotenoid pigments at high irradiance or more chlorophyll, resulting in corresponding differences in photosynthetic efficiency and non-photochemical quenching among host-symbiont pairings. These data suggest that the multiple origins of P. bursaria-Chlorella symbiosis use a convergent nutrient exchange, whereas other photosynthetic traits linked to functioning of photosymbiosis have diverged. Although convergence enables partner switching among diverse strains, phenotypic mismatches resulting from divergence of secondary symbiotic traits could mediate host-symbiont specificity in nature. •Paramecium-Chlorella symbiosis has evolved independently multiple times•Independent origins use a convergent nutrient exchange, enabling partner switching•Chlorella genotypes have evolved divergent mechanisms to cope with excess light•Consequent phenotypic mismatches could mediate host-symbiont specificity Sørensen et al. compare multiple independent evolutionary origins of Paramecium-Chlorella symbiosis to reveal the underpinning metabolic mechanisms. Although the independent origins use a convergent nutrient exchange, they have diverged in traits linked to photosynthesis, which could mediate host-symbiont specificity in nature.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2019.11.053</identifier><identifier>PMID: 31902722</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Chlorella ; endosymbiosis ; metabolomics ; mixotrophy ; mutualism ; Paramecium bursaria ; partner switching ; photosymbiosis ; photosynthesis ; symbiosis</subject><ispartof>Current biology, 2020-01, Vol.30 (2), p.328-334.e4</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-280db499a4523838e92f5600a98a9af83a412f5ed9d8b362ac8f6cee2204127d3</citedby><cites>FETCH-LOGICAL-c396t-280db499a4523838e92f5600a98a9af83a412f5ed9d8b362ac8f6cee2204127d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982219315234$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31902722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sørensen, Megan E.S.</creatorcontrib><creatorcontrib>Wood, A. Jamie</creatorcontrib><creatorcontrib>Minter, Ewan J.A.</creatorcontrib><creatorcontrib>Lowe, Chris D.</creatorcontrib><creatorcontrib>Cameron, Duncan D.</creatorcontrib><creatorcontrib>Brockhurst, Michael A.</creatorcontrib><title>Comparison of Independent Evolutionary Origins Reveals Both Convergence and Divergence in the Metabolic Mechanisms of Symbiosis</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3–6]. The transient nature of establishment makes study of symbiotic origins difficult, but experimental comparison of independent origins could reveal the degree of convergence in the underpinning mechanisms [7, 8]. We compared the metabolic mechanisms of two independent origins of Paramecium bursaria-Chlorella photosymbiosis [9–11] using a reciprocal metabolomic pulse-chase method. This showed convergent patterns of nutrient exchange and utilization for host-derived nitrogen in the Chlorella genotypes [12, 13] and symbiont-derived carbon in the P. bursaria genotypes [14, 15]. Consistent with a convergent primary nutrient exchange, partner-switched host-symbiont pairings were functional. Direct competition of hosts containing native or recombined symbionts against isogenic symbiont-free hosts showed that the fitness benefits of symbiosis for hosts increased with irradiance but varied by genotype. Global metabolism varied more between the Chlorella than the P. bursaria genotypes and suggested divergent mechanisms of light management. Specifically, the algal symbiont genotypes either produced photo-protective carotenoid pigments at high irradiance or more chlorophyll, resulting in corresponding differences in photosynthetic efficiency and non-photochemical quenching among host-symbiont pairings. These data suggest that the multiple origins of P. bursaria-Chlorella symbiosis use a convergent nutrient exchange, whereas other photosynthetic traits linked to functioning of photosymbiosis have diverged. Although convergence enables partner switching among diverse strains, phenotypic mismatches resulting from divergence of secondary symbiotic traits could mediate host-symbiont specificity in nature. •Paramecium-Chlorella symbiosis has evolved independently multiple times•Independent origins use a convergent nutrient exchange, enabling partner switching•Chlorella genotypes have evolved divergent mechanisms to cope with excess light•Consequent phenotypic mismatches could mediate host-symbiont specificity Sørensen et al. compare multiple independent evolutionary origins of Paramecium-Chlorella symbiosis to reveal the underpinning metabolic mechanisms. Although the independent origins use a convergent nutrient exchange, they have diverged in traits linked to photosynthesis, which could mediate host-symbiont specificity in nature.</description><subject>Chlorella</subject><subject>endosymbiosis</subject><subject>metabolomics</subject><subject>mixotrophy</subject><subject>mutualism</subject><subject>Paramecium bursaria</subject><subject>partner switching</subject><subject>photosymbiosis</subject><subject>photosynthesis</subject><subject>symbiosis</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v2zAMhoVhxZp2-wG7DDruYlcftiNhpzXt2gAZCmztWZAlulFgS6lkB-ipf30KkuXYiyiSL1-CD0JfKSkpoc3VpjRTWzJCZUlpSWr-Ac2omMuCVFX9Ec2IbEghBWPn6CKlDSGUCdl8QuecSsLmjM3Q2yIMWx1dCh6HDi-9hS3kx4_4dhf6aXTB6_iKH6J7dj7hP7AD3Sd8HcY1XgS_g_gM3gDW3uIbd0qdx-Ma8G8YdRt6Z_LPrLV3aUj7PX9fh9aF5NJndNZlP_hyjJfo6dft4-K-WD3cLRc_V4XhshkLJohtKyl1VTMuuADJurohREuhpe4E1xXNFbDSipY3TBvRNQaAMZIbc8sv0feD7zaGlwnSqAaXDPS99hCmpBjnXDIhRJ2l9CA1MaQUoVPb6IYMQVGi9tzVRmXuas9dUaoy9zzz7Wg_tQPY08R_0Fnw4yCAfOTOQVTJuD0p6yKYUdng3rH_B5UhlME</recordid><startdate>20200120</startdate><enddate>20200120</enddate><creator>Sørensen, Megan E.S.</creator><creator>Wood, A. Jamie</creator><creator>Minter, Ewan J.A.</creator><creator>Lowe, Chris D.</creator><creator>Cameron, Duncan D.</creator><creator>Brockhurst, Michael A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200120</creationdate><title>Comparison of Independent Evolutionary Origins Reveals Both Convergence and Divergence in the Metabolic Mechanisms of Symbiosis</title><author>Sørensen, Megan E.S. ; Wood, A. Jamie ; Minter, Ewan J.A. ; Lowe, Chris D. ; Cameron, Duncan D. ; Brockhurst, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-280db499a4523838e92f5600a98a9af83a412f5ed9d8b362ac8f6cee2204127d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chlorella</topic><topic>endosymbiosis</topic><topic>metabolomics</topic><topic>mixotrophy</topic><topic>mutualism</topic><topic>Paramecium bursaria</topic><topic>partner switching</topic><topic>photosymbiosis</topic><topic>photosynthesis</topic><topic>symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sørensen, Megan E.S.</creatorcontrib><creatorcontrib>Wood, A. Jamie</creatorcontrib><creatorcontrib>Minter, Ewan J.A.</creatorcontrib><creatorcontrib>Lowe, Chris D.</creatorcontrib><creatorcontrib>Cameron, Duncan D.</creatorcontrib><creatorcontrib>Brockhurst, Michael A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sørensen, Megan E.S.</au><au>Wood, A. Jamie</au><au>Minter, Ewan J.A.</au><au>Lowe, Chris D.</au><au>Cameron, Duncan D.</au><au>Brockhurst, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Independent Evolutionary Origins Reveals Both Convergence and Divergence in the Metabolic Mechanisms of Symbiosis</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2020-01-20</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>328</spage><epage>334.e4</epage><pages>328-334.e4</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3–6]. The transient nature of establishment makes study of symbiotic origins difficult, but experimental comparison of independent origins could reveal the degree of convergence in the underpinning mechanisms [7, 8]. We compared the metabolic mechanisms of two independent origins of Paramecium bursaria-Chlorella photosymbiosis [9–11] using a reciprocal metabolomic pulse-chase method. This showed convergent patterns of nutrient exchange and utilization for host-derived nitrogen in the Chlorella genotypes [12, 13] and symbiont-derived carbon in the P. bursaria genotypes [14, 15]. Consistent with a convergent primary nutrient exchange, partner-switched host-symbiont pairings were functional. Direct competition of hosts containing native or recombined symbionts against isogenic symbiont-free hosts showed that the fitness benefits of symbiosis for hosts increased with irradiance but varied by genotype. Global metabolism varied more between the Chlorella than the P. bursaria genotypes and suggested divergent mechanisms of light management. Specifically, the algal symbiont genotypes either produced photo-protective carotenoid pigments at high irradiance or more chlorophyll, resulting in corresponding differences in photosynthetic efficiency and non-photochemical quenching among host-symbiont pairings. These data suggest that the multiple origins of P. bursaria-Chlorella symbiosis use a convergent nutrient exchange, whereas other photosynthetic traits linked to functioning of photosymbiosis have diverged. Although convergence enables partner switching among diverse strains, phenotypic mismatches resulting from divergence of secondary symbiotic traits could mediate host-symbiont specificity in nature. •Paramecium-Chlorella symbiosis has evolved independently multiple times•Independent origins use a convergent nutrient exchange, enabling partner switching•Chlorella genotypes have evolved divergent mechanisms to cope with excess light•Consequent phenotypic mismatches could mediate host-symbiont specificity Sørensen et al. compare multiple independent evolutionary origins of Paramecium-Chlorella symbiosis to reveal the underpinning metabolic mechanisms. Although the independent origins use a convergent nutrient exchange, they have diverged in traits linked to photosynthesis, which could mediate host-symbiont specificity in nature.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>31902722</pmid><doi>10.1016/j.cub.2019.11.053</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2020-01, Vol.30 (2), p.328-334.e4
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_2333928885
source Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Chlorella
endosymbiosis
metabolomics
mixotrophy
mutualism
Paramecium bursaria
partner switching
photosymbiosis
photosynthesis
symbiosis
title Comparison of Independent Evolutionary Origins Reveals Both Convergence and Divergence in the Metabolic Mechanisms of Symbiosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Independent%20Evolutionary%20Origins%20Reveals%20Both%20Convergence%20and%20Divergence%20in%20the%20Metabolic%20Mechanisms%20of%20Symbiosis&rft.jtitle=Current%20biology&rft.au=S%C3%B8rensen,%20Megan%20E.S.&rft.date=2020-01-20&rft.volume=30&rft.issue=2&rft.spage=328&rft.epage=334.e4&rft.pages=328-334.e4&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2019.11.053&rft_dat=%3Cproquest_cross%3E2333928885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333928885&rft_id=info:pmid/31902722&rft_els_id=S0960982219315234&rfr_iscdi=true