TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge
Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer’s disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA se...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2020-03, Vol.105 (5), p.837-854.e9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 854.e9 |
---|---|
container_issue | 5 |
container_start_page | 837 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 105 |
creator | Nugent, Alicia A. Lin, Karin van Lengerich, Bettina Lianoglou, Steve Przybyla, Laralynne Davis, Sonnet S. Llapashtica, Ceyda Wang, Junhua Kim, Do Jin Xia, Dan Lucas, Anthony Baskaran, Sulochanadevi Haddick, Patrick C.G. Lenser, Melina Earr, Timothy K. Shi, Ju Dugas, Jason C. Andreone, Benjamin J. Logan, Todd Solanoy, Hilda O. Chen, Hang Srivastava, Ankita Poda, Suresh B. Sanchez, Pascal E. Watts, Ryan J. Sandmann, Thomas Astarita, Giuseppe Lewcock, Joseph W. Monroe, Kathryn M. Di Paolo, Gilbert |
description | Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer’s disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.
[Display omitted]
•Upon demyelination, Trem2–/– microglia fail to upregulate lipid metabolism genes•Trem2–/– microglia accumulate cholesteryl ester derived from myelin cholesterol•Accumulation is rescued by ACAT1 inhibitor and LXR agonist•Apoe–/– glia defective in cholesterol transport also accumulate cholesteryl ester
TREM2 and APOE are implicated in late-onset Alzheimer’s disease. Here, Nugent et al. report that TREM2 upregulates Apoe and other damage-associated microglial genes upon chronic demyelination. Loss of either Trem2 or Apoe causes dysregulated cholesterol transport and metabolism in microglia. |
doi_str_mv | 10.1016/j.neuron.2019.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2333926661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627319310499</els_id><sourcerecordid>2333926661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ce15fe19dd870032673f74423ff0b9b64e32001dfcfd5316fc55a6a8bbccf79a3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpaTbb_IMQDL30YlcftmxdCsHkC7I0bJKzkOXRrhattZHswv77artJDznkNAPzzMzLg9A5wQXBhP_cFANMwQ8FxUQUhBYY15_QjGBR5yUR4jOa4UbwnNOanaDTGDcYk7IS5Cs6YURgWtFmhh6fllcLmi1hNTk1QswWVge_cla5rF17B3GE4F22gFF13tm4zaadH9IsvbY6e1irldf7MbXtWjkHwwq-oS9GuQhnr3WOnq-vntrb_P73zV17eZ9r1lRjroFUBojo-6bGmFFeM1OXJWXG4E50vARGU-TeaNNXjHCjq0px1XSd1qYWis3Rj-PdXfAvU0oqtzZqcE4N4KcoKWNMUM45Sej3d-jGT2FI6SQtaZWYBteJKo9UUhBjACN3wW5V2EuC5UG63MijdHmQLgmV-N_axevxqdtC_3_pzXICfh0BSDb-WAgyaguDht4G0KPsvf34w19VQpSa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425666807</pqid></control><display><type>article</type><title>TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge</title><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nugent, Alicia A. ; Lin, Karin ; van Lengerich, Bettina ; Lianoglou, Steve ; Przybyla, Laralynne ; Davis, Sonnet S. ; Llapashtica, Ceyda ; Wang, Junhua ; Kim, Do Jin ; Xia, Dan ; Lucas, Anthony ; Baskaran, Sulochanadevi ; Haddick, Patrick C.G. ; Lenser, Melina ; Earr, Timothy K. ; Shi, Ju ; Dugas, Jason C. ; Andreone, Benjamin J. ; Logan, Todd ; Solanoy, Hilda O. ; Chen, Hang ; Srivastava, Ankita ; Poda, Suresh B. ; Sanchez, Pascal E. ; Watts, Ryan J. ; Sandmann, Thomas ; Astarita, Giuseppe ; Lewcock, Joseph W. ; Monroe, Kathryn M. ; Di Paolo, Gilbert</creator><creatorcontrib>Nugent, Alicia A. ; Lin, Karin ; van Lengerich, Bettina ; Lianoglou, Steve ; Przybyla, Laralynne ; Davis, Sonnet S. ; Llapashtica, Ceyda ; Wang, Junhua ; Kim, Do Jin ; Xia, Dan ; Lucas, Anthony ; Baskaran, Sulochanadevi ; Haddick, Patrick C.G. ; Lenser, Melina ; Earr, Timothy K. ; Shi, Ju ; Dugas, Jason C. ; Andreone, Benjamin J. ; Logan, Todd ; Solanoy, Hilda O. ; Chen, Hang ; Srivastava, Ankita ; Poda, Suresh B. ; Sanchez, Pascal E. ; Watts, Ryan J. ; Sandmann, Thomas ; Astarita, Giuseppe ; Lewcock, Joseph W. ; Monroe, Kathryn M. ; Di Paolo, Gilbert</creatorcontrib><description>Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer’s disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.
[Display omitted]
•Upon demyelination, Trem2–/– microglia fail to upregulate lipid metabolism genes•Trem2–/– microglia accumulate cholesteryl ester derived from myelin cholesterol•Accumulation is rescued by ACAT1 inhibitor and LXR agonist•Apoe–/– glia defective in cholesterol transport also accumulate cholesteryl ester
TREM2 and APOE are implicated in late-onset Alzheimer’s disease. Here, Nugent et al. report that TREM2 upregulates Apoe and other damage-associated microglial genes upon chronic demyelination. Loss of either Trem2 or Apoe causes dysregulated cholesterol transport and metabolism in microglia.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2019.12.007</identifier><identifier>PMID: 31902528</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alzheimer's disease ; APOE ; Apolipoprotein E ; Cholesterol ; cholesteryl ester ; Demyelination ; Disease ; Gene expression ; Glial cells ; Kinases ; Ligands ; Lipid metabolism ; Lipids ; Macrophages ; Metabolism ; Microglia ; Myelin ; Neurodegeneration ; Neurodegenerative diseases ; Phagocytes ; Phagocytosis ; Ribonucleic acid ; RNA ; Transcription ; TREM2</subject><ispartof>Neuron (Cambridge, Mass.), 2020-03, Vol.105 (5), p.837-854.e9</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>2019. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c385t-ce15fe19dd870032673f74423ff0b9b64e32001dfcfd5316fc55a6a8bbccf79a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2019.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31902528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nugent, Alicia A.</creatorcontrib><creatorcontrib>Lin, Karin</creatorcontrib><creatorcontrib>van Lengerich, Bettina</creatorcontrib><creatorcontrib>Lianoglou, Steve</creatorcontrib><creatorcontrib>Przybyla, Laralynne</creatorcontrib><creatorcontrib>Davis, Sonnet S.</creatorcontrib><creatorcontrib>Llapashtica, Ceyda</creatorcontrib><creatorcontrib>Wang, Junhua</creatorcontrib><creatorcontrib>Kim, Do Jin</creatorcontrib><creatorcontrib>Xia, Dan</creatorcontrib><creatorcontrib>Lucas, Anthony</creatorcontrib><creatorcontrib>Baskaran, Sulochanadevi</creatorcontrib><creatorcontrib>Haddick, Patrick C.G.</creatorcontrib><creatorcontrib>Lenser, Melina</creatorcontrib><creatorcontrib>Earr, Timothy K.</creatorcontrib><creatorcontrib>Shi, Ju</creatorcontrib><creatorcontrib>Dugas, Jason C.</creatorcontrib><creatorcontrib>Andreone, Benjamin J.</creatorcontrib><creatorcontrib>Logan, Todd</creatorcontrib><creatorcontrib>Solanoy, Hilda O.</creatorcontrib><creatorcontrib>Chen, Hang</creatorcontrib><creatorcontrib>Srivastava, Ankita</creatorcontrib><creatorcontrib>Poda, Suresh B.</creatorcontrib><creatorcontrib>Sanchez, Pascal E.</creatorcontrib><creatorcontrib>Watts, Ryan J.</creatorcontrib><creatorcontrib>Sandmann, Thomas</creatorcontrib><creatorcontrib>Astarita, Giuseppe</creatorcontrib><creatorcontrib>Lewcock, Joseph W.</creatorcontrib><creatorcontrib>Monroe, Kathryn M.</creatorcontrib><creatorcontrib>Di Paolo, Gilbert</creatorcontrib><title>TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer’s disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.
[Display omitted]
•Upon demyelination, Trem2–/– microglia fail to upregulate lipid metabolism genes•Trem2–/– microglia accumulate cholesteryl ester derived from myelin cholesterol•Accumulation is rescued by ACAT1 inhibitor and LXR agonist•Apoe–/– glia defective in cholesterol transport also accumulate cholesteryl ester
TREM2 and APOE are implicated in late-onset Alzheimer’s disease. Here, Nugent et al. report that TREM2 upregulates Apoe and other damage-associated microglial genes upon chronic demyelination. Loss of either Trem2 or Apoe causes dysregulated cholesterol transport and metabolism in microglia.</description><subject>Alzheimer's disease</subject><subject>APOE</subject><subject>Apolipoprotein E</subject><subject>Cholesterol</subject><subject>cholesteryl ester</subject><subject>Demyelination</subject><subject>Disease</subject><subject>Gene expression</subject><subject>Glial cells</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Macrophages</subject><subject>Metabolism</subject><subject>Microglia</subject><subject>Myelin</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Phagocytes</subject><subject>Phagocytosis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transcription</subject><subject>TREM2</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpaTbb_IMQDL30YlcftmxdCsHkC7I0bJKzkOXRrhattZHswv77artJDznkNAPzzMzLg9A5wQXBhP_cFANMwQ8FxUQUhBYY15_QjGBR5yUR4jOa4UbwnNOanaDTGDcYk7IS5Cs6YURgWtFmhh6fllcLmi1hNTk1QswWVge_cla5rF17B3GE4F22gFF13tm4zaadH9IsvbY6e1irldf7MbXtWjkHwwq-oS9GuQhnr3WOnq-vntrb_P73zV17eZ9r1lRjroFUBojo-6bGmFFeM1OXJWXG4E50vARGU-TeaNNXjHCjq0px1XSd1qYWis3Rj-PdXfAvU0oqtzZqcE4N4KcoKWNMUM45Sej3d-jGT2FI6SQtaZWYBteJKo9UUhBjACN3wW5V2EuC5UG63MijdHmQLgmV-N_axevxqdtC_3_pzXICfh0BSDb-WAgyaguDht4G0KPsvf34w19VQpSa</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Nugent, Alicia A.</creator><creator>Lin, Karin</creator><creator>van Lengerich, Bettina</creator><creator>Lianoglou, Steve</creator><creator>Przybyla, Laralynne</creator><creator>Davis, Sonnet S.</creator><creator>Llapashtica, Ceyda</creator><creator>Wang, Junhua</creator><creator>Kim, Do Jin</creator><creator>Xia, Dan</creator><creator>Lucas, Anthony</creator><creator>Baskaran, Sulochanadevi</creator><creator>Haddick, Patrick C.G.</creator><creator>Lenser, Melina</creator><creator>Earr, Timothy K.</creator><creator>Shi, Ju</creator><creator>Dugas, Jason C.</creator><creator>Andreone, Benjamin J.</creator><creator>Logan, Todd</creator><creator>Solanoy, Hilda O.</creator><creator>Chen, Hang</creator><creator>Srivastava, Ankita</creator><creator>Poda, Suresh B.</creator><creator>Sanchez, Pascal E.</creator><creator>Watts, Ryan J.</creator><creator>Sandmann, Thomas</creator><creator>Astarita, Giuseppe</creator><creator>Lewcock, Joseph W.</creator><creator>Monroe, Kathryn M.</creator><creator>Di Paolo, Gilbert</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200304</creationdate><title>TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge</title><author>Nugent, Alicia A. ; Lin, Karin ; van Lengerich, Bettina ; Lianoglou, Steve ; Przybyla, Laralynne ; Davis, Sonnet S. ; Llapashtica, Ceyda ; Wang, Junhua ; Kim, Do Jin ; Xia, Dan ; Lucas, Anthony ; Baskaran, Sulochanadevi ; Haddick, Patrick C.G. ; Lenser, Melina ; Earr, Timothy K. ; Shi, Ju ; Dugas, Jason C. ; Andreone, Benjamin J. ; Logan, Todd ; Solanoy, Hilda O. ; Chen, Hang ; Srivastava, Ankita ; Poda, Suresh B. ; Sanchez, Pascal E. ; Watts, Ryan J. ; Sandmann, Thomas ; Astarita, Giuseppe ; Lewcock, Joseph W. ; Monroe, Kathryn M. ; Di Paolo, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ce15fe19dd870032673f74423ff0b9b64e32001dfcfd5316fc55a6a8bbccf79a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer's disease</topic><topic>APOE</topic><topic>Apolipoprotein E</topic><topic>Cholesterol</topic><topic>cholesteryl ester</topic><topic>Demyelination</topic><topic>Disease</topic><topic>Gene expression</topic><topic>Glial cells</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Macrophages</topic><topic>Metabolism</topic><topic>Microglia</topic><topic>Myelin</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Phagocytes</topic><topic>Phagocytosis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transcription</topic><topic>TREM2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nugent, Alicia A.</creatorcontrib><creatorcontrib>Lin, Karin</creatorcontrib><creatorcontrib>van Lengerich, Bettina</creatorcontrib><creatorcontrib>Lianoglou, Steve</creatorcontrib><creatorcontrib>Przybyla, Laralynne</creatorcontrib><creatorcontrib>Davis, Sonnet S.</creatorcontrib><creatorcontrib>Llapashtica, Ceyda</creatorcontrib><creatorcontrib>Wang, Junhua</creatorcontrib><creatorcontrib>Kim, Do Jin</creatorcontrib><creatorcontrib>Xia, Dan</creatorcontrib><creatorcontrib>Lucas, Anthony</creatorcontrib><creatorcontrib>Baskaran, Sulochanadevi</creatorcontrib><creatorcontrib>Haddick, Patrick C.G.</creatorcontrib><creatorcontrib>Lenser, Melina</creatorcontrib><creatorcontrib>Earr, Timothy K.</creatorcontrib><creatorcontrib>Shi, Ju</creatorcontrib><creatorcontrib>Dugas, Jason C.</creatorcontrib><creatorcontrib>Andreone, Benjamin J.</creatorcontrib><creatorcontrib>Logan, Todd</creatorcontrib><creatorcontrib>Solanoy, Hilda O.</creatorcontrib><creatorcontrib>Chen, Hang</creatorcontrib><creatorcontrib>Srivastava, Ankita</creatorcontrib><creatorcontrib>Poda, Suresh B.</creatorcontrib><creatorcontrib>Sanchez, Pascal E.</creatorcontrib><creatorcontrib>Watts, Ryan J.</creatorcontrib><creatorcontrib>Sandmann, Thomas</creatorcontrib><creatorcontrib>Astarita, Giuseppe</creatorcontrib><creatorcontrib>Lewcock, Joseph W.</creatorcontrib><creatorcontrib>Monroe, Kathryn M.</creatorcontrib><creatorcontrib>Di Paolo, Gilbert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nugent, Alicia A.</au><au>Lin, Karin</au><au>van Lengerich, Bettina</au><au>Lianoglou, Steve</au><au>Przybyla, Laralynne</au><au>Davis, Sonnet S.</au><au>Llapashtica, Ceyda</au><au>Wang, Junhua</au><au>Kim, Do Jin</au><au>Xia, Dan</au><au>Lucas, Anthony</au><au>Baskaran, Sulochanadevi</au><au>Haddick, Patrick C.G.</au><au>Lenser, Melina</au><au>Earr, Timothy K.</au><au>Shi, Ju</au><au>Dugas, Jason C.</au><au>Andreone, Benjamin J.</au><au>Logan, Todd</au><au>Solanoy, Hilda O.</au><au>Chen, Hang</au><au>Srivastava, Ankita</au><au>Poda, Suresh B.</au><au>Sanchez, Pascal E.</au><au>Watts, Ryan J.</au><au>Sandmann, Thomas</au><au>Astarita, Giuseppe</au><au>Lewcock, Joseph W.</au><au>Monroe, Kathryn M.</au><au>Di Paolo, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2020-03-04</date><risdate>2020</risdate><volume>105</volume><issue>5</issue><spage>837</spage><epage>854.e9</epage><pages>837-854.e9</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer’s disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.
[Display omitted]
•Upon demyelination, Trem2–/– microglia fail to upregulate lipid metabolism genes•Trem2–/– microglia accumulate cholesteryl ester derived from myelin cholesterol•Accumulation is rescued by ACAT1 inhibitor and LXR agonist•Apoe–/– glia defective in cholesterol transport also accumulate cholesteryl ester
TREM2 and APOE are implicated in late-onset Alzheimer’s disease. Here, Nugent et al. report that TREM2 upregulates Apoe and other damage-associated microglial genes upon chronic demyelination. Loss of either Trem2 or Apoe causes dysregulated cholesterol transport and metabolism in microglia.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31902528</pmid><doi>10.1016/j.neuron.2019.12.007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2020-03, Vol.105 (5), p.837-854.e9 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_2333926661 |
source | Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Alzheimer's disease APOE Apolipoprotein E Cholesterol cholesteryl ester Demyelination Disease Gene expression Glial cells Kinases Ligands Lipid metabolism Lipids Macrophages Metabolism Microglia Myelin Neurodegeneration Neurodegenerative diseases Phagocytes Phagocytosis Ribonucleic acid RNA Transcription TREM2 |
title | TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TREM2%20Regulates%20Microglial%20Cholesterol%20Metabolism%20upon%20Chronic%20Phagocytic%20Challenge&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Nugent,%20Alicia%20A.&rft.date=2020-03-04&rft.volume=105&rft.issue=5&rft.spage=837&rft.epage=854.e9&rft.pages=837-854.e9&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2019.12.007&rft_dat=%3Cproquest_cross%3E2333926661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425666807&rft_id=info:pmid/31902528&rft_els_id=S0896627319310499&rfr_iscdi=true |