Probing Phase Distribution in 2D Perovskites for Efficient Device Design
Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). Howeve...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-01, Vol.12 (2), p.3127-3133 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3133 |
---|---|
container_issue | 2 |
container_start_page | 3127 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Liu, Na Liu, Pengfei Ren, Haoxiang Xie, Haipeng Zhou, Ning Gao, Yongli Li, Yujing Zhou, Huanping Bai, Yang Chen, Qi |
description | Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). However, a convincing evidence is still lacking to clarify the phase distribution with respect to different n, thus causes the misleading for device design. Herein, confocal photoluminescence (PL) spectroscopy was applied to probe the inhomogeneity of 2D perovskite films along the vertical direction to construct a clear-phase distribution mapping consequently. It reveals that the 2D perovskite phases (n = 2, 3, 4) locate preferentially near the substrate, while large n phases are predominantly near the top surface. Moreover, we successfully developed a simple method to manipulate the phase distribution in 2D perovskite thin films, which results in a dramatic increase of device efficiency from 4.95 to 11.6%. Our findings thus provide insights to the understanding of 2D perovskite film growth. The utilization of visualized phase distribution data could also guide the further development of 2D perovskite materials for optoelectronic devices. |
doi_str_mv | 10.1021/acsami.9b17047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2333612195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333612195</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-bdcdb7985ab81f60c62abf2481b739fe0a22484c7d38d304a0b779fcda3a5bfb3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk6vHiVHETrzq017FDedMHAHPYckTWbmmsykHfjfW-nczdP3ffC8L3wPANcYTTEi-F7qJBs3rRTmiPETMMYVY1lJcnJ63BkbgYuUNggVlKD8HIwoLinlOR2DxSoG5fwarj5kMnDmUhud6loXPHQekhlcmRj26dO1JkEbIpxb67QzvoUzs3e6z5jk1v4SnFm5TebqMCfg_Wn-9rjIlq_PL48Py0xSitpM1bpWvCpzqUpsC6QLIpUlrMSK08oaJEl_MM1rWtYUMYkU55XVtaQyV1bRCbgdencxfHUmtaJxSZvtVnoTuiQIpbTABFd5j04HVMeQUjRW7KJrZPwWGIlfe2KwJw72-sDNobtTjamP-J-uHrgbgD4oNqGLvn_1v7Yf9il52w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333612195</pqid></control><display><type>article</type><title>Probing Phase Distribution in 2D Perovskites for Efficient Device Design</title><source>ACS Publications</source><creator>Liu, Na ; Liu, Pengfei ; Ren, Haoxiang ; Xie, Haipeng ; Zhou, Ning ; Gao, Yongli ; Li, Yujing ; Zhou, Huanping ; Bai, Yang ; Chen, Qi</creator><creatorcontrib>Liu, Na ; Liu, Pengfei ; Ren, Haoxiang ; Xie, Haipeng ; Zhou, Ning ; Gao, Yongli ; Li, Yujing ; Zhou, Huanping ; Bai, Yang ; Chen, Qi</creatorcontrib><description>Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). However, a convincing evidence is still lacking to clarify the phase distribution with respect to different n, thus causes the misleading for device design. Herein, confocal photoluminescence (PL) spectroscopy was applied to probe the inhomogeneity of 2D perovskite films along the vertical direction to construct a clear-phase distribution mapping consequently. It reveals that the 2D perovskite phases (n = 2, 3, 4) locate preferentially near the substrate, while large n phases are predominantly near the top surface. Moreover, we successfully developed a simple method to manipulate the phase distribution in 2D perovskite thin films, which results in a dramatic increase of device efficiency from 4.95 to 11.6%. Our findings thus provide insights to the understanding of 2D perovskite film growth. The utilization of visualized phase distribution data could also guide the further development of 2D perovskite materials for optoelectronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b17047</identifier><identifier>PMID: 31833753</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-01, Vol.12 (2), p.3127-3133</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-bdcdb7985ab81f60c62abf2481b739fe0a22484c7d38d304a0b779fcda3a5bfb3</citedby><cites>FETCH-LOGICAL-a330t-bdcdb7985ab81f60c62abf2481b739fe0a22484c7d38d304a0b779fcda3a5bfb3</cites><orcidid>0000-0002-1220-4778 ; 0000-0002-0070-5540 ; 0000-0002-9647-5873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b17047$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b17047$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31833753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Ren, Haoxiang</creatorcontrib><creatorcontrib>Xie, Haipeng</creatorcontrib><creatorcontrib>Zhou, Ning</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><creatorcontrib>Li, Yujing</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><title>Probing Phase Distribution in 2D Perovskites for Efficient Device Design</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). However, a convincing evidence is still lacking to clarify the phase distribution with respect to different n, thus causes the misleading for device design. Herein, confocal photoluminescence (PL) spectroscopy was applied to probe the inhomogeneity of 2D perovskite films along the vertical direction to construct a clear-phase distribution mapping consequently. It reveals that the 2D perovskite phases (n = 2, 3, 4) locate preferentially near the substrate, while large n phases are predominantly near the top surface. Moreover, we successfully developed a simple method to manipulate the phase distribution in 2D perovskite thin films, which results in a dramatic increase of device efficiency from 4.95 to 11.6%. Our findings thus provide insights to the understanding of 2D perovskite film growth. The utilization of visualized phase distribution data could also guide the further development of 2D perovskite materials for optoelectronic devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk6vHiVHETrzq017FDedMHAHPYckTWbmmsykHfjfW-nczdP3ffC8L3wPANcYTTEi-F7qJBs3rRTmiPETMMYVY1lJcnJ63BkbgYuUNggVlKD8HIwoLinlOR2DxSoG5fwarj5kMnDmUhud6loXPHQekhlcmRj26dO1JkEbIpxb67QzvoUzs3e6z5jk1v4SnFm5TebqMCfg_Wn-9rjIlq_PL48Py0xSitpM1bpWvCpzqUpsC6QLIpUlrMSK08oaJEl_MM1rWtYUMYkU55XVtaQyV1bRCbgdencxfHUmtaJxSZvtVnoTuiQIpbTABFd5j04HVMeQUjRW7KJrZPwWGIlfe2KwJw72-sDNobtTjamP-J-uHrgbgD4oNqGLvn_1v7Yf9il52w</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Liu, Na</creator><creator>Liu, Pengfei</creator><creator>Ren, Haoxiang</creator><creator>Xie, Haipeng</creator><creator>Zhou, Ning</creator><creator>Gao, Yongli</creator><creator>Li, Yujing</creator><creator>Zhou, Huanping</creator><creator>Bai, Yang</creator><creator>Chen, Qi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1220-4778</orcidid><orcidid>https://orcid.org/0000-0002-0070-5540</orcidid><orcidid>https://orcid.org/0000-0002-9647-5873</orcidid></search><sort><creationdate>20200115</creationdate><title>Probing Phase Distribution in 2D Perovskites for Efficient Device Design</title><author>Liu, Na ; Liu, Pengfei ; Ren, Haoxiang ; Xie, Haipeng ; Zhou, Ning ; Gao, Yongli ; Li, Yujing ; Zhou, Huanping ; Bai, Yang ; Chen, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-bdcdb7985ab81f60c62abf2481b739fe0a22484c7d38d304a0b779fcda3a5bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Ren, Haoxiang</creatorcontrib><creatorcontrib>Xie, Haipeng</creatorcontrib><creatorcontrib>Zhou, Ning</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><creatorcontrib>Li, Yujing</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Na</au><au>Liu, Pengfei</au><au>Ren, Haoxiang</au><au>Xie, Haipeng</au><au>Zhou, Ning</au><au>Gao, Yongli</au><au>Li, Yujing</au><au>Zhou, Huanping</au><au>Bai, Yang</au><au>Chen, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Phase Distribution in 2D Perovskites for Efficient Device Design</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-01-15</date><risdate>2020</risdate><volume>12</volume><issue>2</issue><spage>3127</spage><epage>3133</epage><pages>3127-3133</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). However, a convincing evidence is still lacking to clarify the phase distribution with respect to different n, thus causes the misleading for device design. Herein, confocal photoluminescence (PL) spectroscopy was applied to probe the inhomogeneity of 2D perovskite films along the vertical direction to construct a clear-phase distribution mapping consequently. It reveals that the 2D perovskite phases (n = 2, 3, 4) locate preferentially near the substrate, while large n phases are predominantly near the top surface. Moreover, we successfully developed a simple method to manipulate the phase distribution in 2D perovskite thin films, which results in a dramatic increase of device efficiency from 4.95 to 11.6%. Our findings thus provide insights to the understanding of 2D perovskite film growth. The utilization of visualized phase distribution data could also guide the further development of 2D perovskite materials for optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31833753</pmid><doi>10.1021/acsami.9b17047</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1220-4778</orcidid><orcidid>https://orcid.org/0000-0002-0070-5540</orcidid><orcidid>https://orcid.org/0000-0002-9647-5873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-01, Vol.12 (2), p.3127-3133 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2333612195 |
source | ACS Publications |
title | Probing Phase Distribution in 2D Perovskites for Efficient Device Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Phase%20Distribution%20in%202D%20Perovskites%20for%20Efficient%20Device%20Design&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Na&rft.date=2020-01-15&rft.volume=12&rft.issue=2&rft.spage=3127&rft.epage=3133&rft.pages=3127-3133&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b17047&rft_dat=%3Cproquest_cross%3E2333612195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333612195&rft_id=info:pmid/31833753&rfr_iscdi=true |