Probing Phase Distribution in 2D Perovskites for Efficient Device Design

Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-01, Vol.12 (2), p.3127-3133
Hauptverfasser: Liu, Na, Liu, Pengfei, Ren, Haoxiang, Xie, Haipeng, Zhou, Ning, Gao, Yongli, Li, Yujing, Zhou, Huanping, Bai, Yang, Chen, Qi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3133
container_issue 2
container_start_page 3127
container_title ACS applied materials & interfaces
container_volume 12
creator Liu, Na
Liu, Pengfei
Ren, Haoxiang
Xie, Haipeng
Zhou, Ning
Gao, Yongli
Li, Yujing
Zhou, Huanping
Bai, Yang
Chen, Qi
description Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). However, a convincing evidence is still lacking to clarify the phase distribution with respect to different n, thus causes the misleading for device design. Herein, confocal photoluminescence (PL) spectroscopy was applied to probe the inhomogeneity of 2D perovskite films along the vertical direction to construct a clear-phase distribution mapping consequently. It reveals that the 2D perovskite phases (n = 2, 3, 4) locate preferentially near the substrate, while large n phases are predominantly near the top surface. Moreover, we successfully developed a simple method to manipulate the phase distribution in 2D perovskite thin films, which results in a dramatic increase of device efficiency from 4.95 to 11.6%. Our findings thus provide insights to the understanding of 2D perovskite film growth. The utilization of visualized phase distribution data could also guide the further development of 2D perovskite materials for optoelectronic devices.
doi_str_mv 10.1021/acsami.9b17047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2333612195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333612195</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-bdcdb7985ab81f60c62abf2481b739fe0a22484c7d38d304a0b779fcda3a5bfb3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk6vHiVHETrzq017FDedMHAHPYckTWbmmsykHfjfW-nczdP3ffC8L3wPANcYTTEi-F7qJBs3rRTmiPETMMYVY1lJcnJ63BkbgYuUNggVlKD8HIwoLinlOR2DxSoG5fwarj5kMnDmUhud6loXPHQekhlcmRj26dO1JkEbIpxb67QzvoUzs3e6z5jk1v4SnFm5TebqMCfg_Wn-9rjIlq_PL48Py0xSitpM1bpWvCpzqUpsC6QLIpUlrMSK08oaJEl_MM1rWtYUMYkU55XVtaQyV1bRCbgdencxfHUmtaJxSZvtVnoTuiQIpbTABFd5j04HVMeQUjRW7KJrZPwWGIlfe2KwJw72-sDNobtTjamP-J-uHrgbgD4oNqGLvn_1v7Yf9il52w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333612195</pqid></control><display><type>article</type><title>Probing Phase Distribution in 2D Perovskites for Efficient Device Design</title><source>ACS Publications</source><creator>Liu, Na ; Liu, Pengfei ; Ren, Haoxiang ; Xie, Haipeng ; Zhou, Ning ; Gao, Yongli ; Li, Yujing ; Zhou, Huanping ; Bai, Yang ; Chen, Qi</creator><creatorcontrib>Liu, Na ; Liu, Pengfei ; Ren, Haoxiang ; Xie, Haipeng ; Zhou, Ning ; Gao, Yongli ; Li, Yujing ; Zhou, Huanping ; Bai, Yang ; Chen, Qi</creatorcontrib><description>Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). However, a convincing evidence is still lacking to clarify the phase distribution with respect to different n, thus causes the misleading for device design. Herein, confocal photoluminescence (PL) spectroscopy was applied to probe the inhomogeneity of 2D perovskite films along the vertical direction to construct a clear-phase distribution mapping consequently. It reveals that the 2D perovskite phases (n = 2, 3, 4) locate preferentially near the substrate, while large n phases are predominantly near the top surface. Moreover, we successfully developed a simple method to manipulate the phase distribution in 2D perovskite thin films, which results in a dramatic increase of device efficiency from 4.95 to 11.6%. Our findings thus provide insights to the understanding of 2D perovskite film growth. The utilization of visualized phase distribution data could also guide the further development of 2D perovskite materials for optoelectronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b17047</identifier><identifier>PMID: 31833753</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-01, Vol.12 (2), p.3127-3133</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-bdcdb7985ab81f60c62abf2481b739fe0a22484c7d38d304a0b779fcda3a5bfb3</citedby><cites>FETCH-LOGICAL-a330t-bdcdb7985ab81f60c62abf2481b739fe0a22484c7d38d304a0b779fcda3a5bfb3</cites><orcidid>0000-0002-1220-4778 ; 0000-0002-0070-5540 ; 0000-0002-9647-5873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b17047$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b17047$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31833753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Ren, Haoxiang</creatorcontrib><creatorcontrib>Xie, Haipeng</creatorcontrib><creatorcontrib>Zhou, Ning</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><creatorcontrib>Li, Yujing</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><title>Probing Phase Distribution in 2D Perovskites for Efficient Device Design</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). However, a convincing evidence is still lacking to clarify the phase distribution with respect to different n, thus causes the misleading for device design. Herein, confocal photoluminescence (PL) spectroscopy was applied to probe the inhomogeneity of 2D perovskite films along the vertical direction to construct a clear-phase distribution mapping consequently. It reveals that the 2D perovskite phases (n = 2, 3, 4) locate preferentially near the substrate, while large n phases are predominantly near the top surface. Moreover, we successfully developed a simple method to manipulate the phase distribution in 2D perovskite thin films, which results in a dramatic increase of device efficiency from 4.95 to 11.6%. Our findings thus provide insights to the understanding of 2D perovskite film growth. The utilization of visualized phase distribution data could also guide the further development of 2D perovskite materials for optoelectronic devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMobk6vHiVHETrzq017FDedMHAHPYckTWbmmsykHfjfW-nczdP3ffC8L3wPANcYTTEi-F7qJBs3rRTmiPETMMYVY1lJcnJ63BkbgYuUNggVlKD8HIwoLinlOR2DxSoG5fwarj5kMnDmUhud6loXPHQekhlcmRj26dO1JkEbIpxb67QzvoUzs3e6z5jk1v4SnFm5TebqMCfg_Wn-9rjIlq_PL48Py0xSitpM1bpWvCpzqUpsC6QLIpUlrMSK08oaJEl_MM1rWtYUMYkU55XVtaQyV1bRCbgdencxfHUmtaJxSZvtVnoTuiQIpbTABFd5j04HVMeQUjRW7KJrZPwWGIlfe2KwJw72-sDNobtTjamP-J-uHrgbgD4oNqGLvn_1v7Yf9il52w</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Liu, Na</creator><creator>Liu, Pengfei</creator><creator>Ren, Haoxiang</creator><creator>Xie, Haipeng</creator><creator>Zhou, Ning</creator><creator>Gao, Yongli</creator><creator>Li, Yujing</creator><creator>Zhou, Huanping</creator><creator>Bai, Yang</creator><creator>Chen, Qi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1220-4778</orcidid><orcidid>https://orcid.org/0000-0002-0070-5540</orcidid><orcidid>https://orcid.org/0000-0002-9647-5873</orcidid></search><sort><creationdate>20200115</creationdate><title>Probing Phase Distribution in 2D Perovskites for Efficient Device Design</title><author>Liu, Na ; Liu, Pengfei ; Ren, Haoxiang ; Xie, Haipeng ; Zhou, Ning ; Gao, Yongli ; Li, Yujing ; Zhou, Huanping ; Bai, Yang ; Chen, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-bdcdb7985ab81f60c62abf2481b739fe0a22484c7d38d304a0b779fcda3a5bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Ren, Haoxiang</creatorcontrib><creatorcontrib>Xie, Haipeng</creatorcontrib><creatorcontrib>Zhou, Ning</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><creatorcontrib>Li, Yujing</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Na</au><au>Liu, Pengfei</au><au>Ren, Haoxiang</au><au>Xie, Haipeng</au><au>Zhou, Ning</au><au>Gao, Yongli</au><au>Li, Yujing</au><au>Zhou, Huanping</au><au>Bai, Yang</au><au>Chen, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Phase Distribution in 2D Perovskites for Efficient Device Design</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-01-15</date><risdate>2020</risdate><volume>12</volume><issue>2</issue><spage>3127</spage><epage>3133</epage><pages>3127-3133</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Two-dimensional (2D) lead halide perovskite has recently been recognized as a promising candidate to stabilize perovskite solar cells due to its extraordinary moisture resistance. These 2D perovskite films often consist of multiple phases with layered (n) lead halide (from n = 1, 2, 3 to ≈∞). However, a convincing evidence is still lacking to clarify the phase distribution with respect to different n, thus causes the misleading for device design. Herein, confocal photoluminescence (PL) spectroscopy was applied to probe the inhomogeneity of 2D perovskite films along the vertical direction to construct a clear-phase distribution mapping consequently. It reveals that the 2D perovskite phases (n = 2, 3, 4) locate preferentially near the substrate, while large n phases are predominantly near the top surface. Moreover, we successfully developed a simple method to manipulate the phase distribution in 2D perovskite thin films, which results in a dramatic increase of device efficiency from 4.95 to 11.6%. Our findings thus provide insights to the understanding of 2D perovskite film growth. The utilization of visualized phase distribution data could also guide the further development of 2D perovskite materials for optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31833753</pmid><doi>10.1021/acsami.9b17047</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1220-4778</orcidid><orcidid>https://orcid.org/0000-0002-0070-5540</orcidid><orcidid>https://orcid.org/0000-0002-9647-5873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-01, Vol.12 (2), p.3127-3133
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2333612195
source ACS Publications
title Probing Phase Distribution in 2D Perovskites for Efficient Device Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Phase%20Distribution%20in%202D%20Perovskites%20for%20Efficient%20Device%20Design&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Na&rft.date=2020-01-15&rft.volume=12&rft.issue=2&rft.spage=3127&rft.epage=3133&rft.pages=3127-3133&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b17047&rft_dat=%3Cproquest_cross%3E2333612195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333612195&rft_id=info:pmid/31833753&rfr_iscdi=true