Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study

Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (2), p.724-733
Hauptverfasser: Wu, Chan, Wang, Li, Xiao, Zhourong, Li, Guozhu, Wang, Lichang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 733
container_issue 2
container_start_page 724
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Wu, Chan
Wang, Li
Xiao, Zhourong
Li, Guozhu
Wang, Lichang
description Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addition, understanding the role of catalysis in these pathways is critical toward the advancement in technology, yet is largely lacking. As such, we have performed density functional theory (DFT) calculations to study the two possible C-C cleavage pathways of n-butane on Ni(111), i.e., the (C-C)α,β cleavage from the n-butane deep dehydrogenation product of 1-butyne, and the (C-C)β,β' cleavage from 2-butyne. The results indicate that these two different pathways have distinct dehydrogenations to butyne, and that Ni is suitable for the deep dehydrogenation. The C-C cleavage in both pathways serves as the rate-determining step with a higher energy barrier than that for the preceding C-H bond cleavage. In addition, the 1-butyne pathway was found to be more favorable than that of 2-butyne in thermodynamics and kinetics. Our results provide insights into the alkane dehydrogenation and cracking of long-chain hydrocarbons on Ni-based catalysts.
doi_str_mv 10.1039/c9cp05022a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2332079942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332079942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ae068ce6865cc0bd0eb381494ccdb2dbefdec2f735bf3682e04d222a89958ea03</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYFKeBH4sTLKlBAqoBFu478mJSUNil2ssjf41Logs3MlebM1cxF6JKSO0q4vDfSbElCGFNHaEhjwSNJsvj4oFMxQGferwghNKH8FA04zXjQYogWi9qC862qbVUvsQXYhvLRW9csoVZt1dQ4zLBxynzuiKbEdaS7sAA4zF6rMaX0BuseK_wwnWPfdrY_RyelWnu4-O0jtJg-zvPnaPb29JJPZpHhCWsjBURkBkQmEmOItgQ0z2gsY2OsZlZDacGwMuWJLrnIGJDYsvBmJmWSgSJ8hMZ7361rvjrwbbGpvIH1OlzXdL5gnDOSShmzgF7_Q1dN5-pw3Y6iqeQijgN1u6eMa7x3UBZbV22U6wtKil3YRS7z95-wJwG--rXs9AbsAf1Ll38DbFV3_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331793644</pqid></control><display><type>article</type><title>Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, Chan ; Wang, Li ; Xiao, Zhourong ; Li, Guozhu ; Wang, Lichang</creator><creatorcontrib>Wu, Chan ; Wang, Li ; Xiao, Zhourong ; Li, Guozhu ; Wang, Lichang</creatorcontrib><description>Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addition, understanding the role of catalysis in these pathways is critical toward the advancement in technology, yet is largely lacking. As such, we have performed density functional theory (DFT) calculations to study the two possible C-C cleavage pathways of n-butane on Ni(111), i.e., the (C-C)α,β cleavage from the n-butane deep dehydrogenation product of 1-butyne, and the (C-C)β,β' cleavage from 2-butyne. The results indicate that these two different pathways have distinct dehydrogenations to butyne, and that Ni is suitable for the deep dehydrogenation. The C-C cleavage in both pathways serves as the rate-determining step with a higher energy barrier than that for the preceding C-H bond cleavage. In addition, the 1-butyne pathway was found to be more favorable than that of 2-butyne in thermodynamics and kinetics. Our results provide insights into the alkane dehydrogenation and cracking of long-chain hydrocarbons on Ni-based catalysts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp05022a</identifier><identifier>PMID: 31830156</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alkanes ; Catalysis ; Cleavage ; Covalent bonds ; Cracking (chemical engineering) ; Dehydrogenation ; Density functional theory ; Hydrogen bonds ; Hydrogen production ; Liquefied petroleum gas ; Molecular chains ; Organic chemistry ; Reaction kinetics ; Reforming ; Shale gas ; Shale oil</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (2), p.724-733</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ae068ce6865cc0bd0eb381494ccdb2dbefdec2f735bf3682e04d222a89958ea03</citedby><cites>FETCH-LOGICAL-c352t-ae068ce6865cc0bd0eb381494ccdb2dbefdec2f735bf3682e04d222a89958ea03</cites><orcidid>0000-0003-1329-0548 ; 0000-0002-6131-3532 ; 0000-0002-2539-5753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31830156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chan</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xiao, Zhourong</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Wang, Lichang</creatorcontrib><title>Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addition, understanding the role of catalysis in these pathways is critical toward the advancement in technology, yet is largely lacking. As such, we have performed density functional theory (DFT) calculations to study the two possible C-C cleavage pathways of n-butane on Ni(111), i.e., the (C-C)α,β cleavage from the n-butane deep dehydrogenation product of 1-butyne, and the (C-C)β,β' cleavage from 2-butyne. The results indicate that these two different pathways have distinct dehydrogenations to butyne, and that Ni is suitable for the deep dehydrogenation. The C-C cleavage in both pathways serves as the rate-determining step with a higher energy barrier than that for the preceding C-H bond cleavage. In addition, the 1-butyne pathway was found to be more favorable than that of 2-butyne in thermodynamics and kinetics. Our results provide insights into the alkane dehydrogenation and cracking of long-chain hydrocarbons on Ni-based catalysts.</description><subject>Alkanes</subject><subject>Catalysis</subject><subject>Cleavage</subject><subject>Covalent bonds</subject><subject>Cracking (chemical engineering)</subject><subject>Dehydrogenation</subject><subject>Density functional theory</subject><subject>Hydrogen bonds</subject><subject>Hydrogen production</subject><subject>Liquefied petroleum gas</subject><subject>Molecular chains</subject><subject>Organic chemistry</subject><subject>Reaction kinetics</subject><subject>Reforming</subject><subject>Shale gas</subject><subject>Shale oil</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYFKeBH4sTLKlBAqoBFu478mJSUNil2ssjf41Logs3MlebM1cxF6JKSO0q4vDfSbElCGFNHaEhjwSNJsvj4oFMxQGferwghNKH8FA04zXjQYogWi9qC862qbVUvsQXYhvLRW9csoVZt1dQ4zLBxynzuiKbEdaS7sAA4zF6rMaX0BuseK_wwnWPfdrY_RyelWnu4-O0jtJg-zvPnaPb29JJPZpHhCWsjBURkBkQmEmOItgQ0z2gsY2OsZlZDacGwMuWJLrnIGJDYsvBmJmWSgSJ8hMZ7361rvjrwbbGpvIH1OlzXdL5gnDOSShmzgF7_Q1dN5-pw3Y6iqeQijgN1u6eMa7x3UBZbV22U6wtKil3YRS7z95-wJwG--rXs9AbsAf1Ll38DbFV3_Q</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Wu, Chan</creator><creator>Wang, Li</creator><creator>Xiao, Zhourong</creator><creator>Li, Guozhu</creator><creator>Wang, Lichang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1329-0548</orcidid><orcidid>https://orcid.org/0000-0002-6131-3532</orcidid><orcidid>https://orcid.org/0000-0002-2539-5753</orcidid></search><sort><creationdate>20200102</creationdate><title>Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study</title><author>Wu, Chan ; Wang, Li ; Xiao, Zhourong ; Li, Guozhu ; Wang, Lichang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ae068ce6865cc0bd0eb381494ccdb2dbefdec2f735bf3682e04d222a89958ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkanes</topic><topic>Catalysis</topic><topic>Cleavage</topic><topic>Covalent bonds</topic><topic>Cracking (chemical engineering)</topic><topic>Dehydrogenation</topic><topic>Density functional theory</topic><topic>Hydrogen bonds</topic><topic>Hydrogen production</topic><topic>Liquefied petroleum gas</topic><topic>Molecular chains</topic><topic>Organic chemistry</topic><topic>Reaction kinetics</topic><topic>Reforming</topic><topic>Shale gas</topic><topic>Shale oil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chan</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xiao, Zhourong</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Wang, Lichang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chan</au><au>Wang, Li</au><au>Xiao, Zhourong</au><au>Li, Guozhu</au><au>Wang, Lichang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>22</volume><issue>2</issue><spage>724</spage><epage>733</epage><pages>724-733</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addition, understanding the role of catalysis in these pathways is critical toward the advancement in technology, yet is largely lacking. As such, we have performed density functional theory (DFT) calculations to study the two possible C-C cleavage pathways of n-butane on Ni(111), i.e., the (C-C)α,β cleavage from the n-butane deep dehydrogenation product of 1-butyne, and the (C-C)β,β' cleavage from 2-butyne. The results indicate that these two different pathways have distinct dehydrogenations to butyne, and that Ni is suitable for the deep dehydrogenation. The C-C cleavage in both pathways serves as the rate-determining step with a higher energy barrier than that for the preceding C-H bond cleavage. In addition, the 1-butyne pathway was found to be more favorable than that of 2-butyne in thermodynamics and kinetics. Our results provide insights into the alkane dehydrogenation and cracking of long-chain hydrocarbons on Ni-based catalysts.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31830156</pmid><doi>10.1039/c9cp05022a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1329-0548</orcidid><orcidid>https://orcid.org/0000-0002-6131-3532</orcidid><orcidid>https://orcid.org/0000-0002-2539-5753</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (2), p.724-733
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2332079942
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alkanes
Catalysis
Cleavage
Covalent bonds
Cracking (chemical engineering)
Dehydrogenation
Density functional theory
Hydrogen bonds
Hydrogen production
Liquefied petroleum gas
Molecular chains
Organic chemistry
Reaction kinetics
Reforming
Shale gas
Shale oil
title Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20deep%20dehydrogenation%20and%20cracking%20of%20n-butane%20on%20Ni(111)%20by%20a%20DFT%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wu,%20Chan&rft.date=2020-01-02&rft.volume=22&rft.issue=2&rft.spage=724&rft.epage=733&rft.pages=724-733&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp05022a&rft_dat=%3Cproquest_cross%3E2332079942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331793644&rft_id=info:pmid/31830156&rfr_iscdi=true