Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study
Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addit...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (2), p.724-733 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 733 |
---|---|
container_issue | 2 |
container_start_page | 724 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Wu, Chan Wang, Li Xiao, Zhourong Li, Guozhu Wang, Lichang |
description | Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addition, understanding the role of catalysis in these pathways is critical toward the advancement in technology, yet is largely lacking. As such, we have performed density functional theory (DFT) calculations to study the two possible C-C cleavage pathways of n-butane on Ni(111), i.e., the (C-C)α,β cleavage from the n-butane deep dehydrogenation product of 1-butyne, and the (C-C)β,β' cleavage from 2-butyne. The results indicate that these two different pathways have distinct dehydrogenations to butyne, and that Ni is suitable for the deep dehydrogenation. The C-C cleavage in both pathways serves as the rate-determining step with a higher energy barrier than that for the preceding C-H bond cleavage. In addition, the 1-butyne pathway was found to be more favorable than that of 2-butyne in thermodynamics and kinetics. Our results provide insights into the alkane dehydrogenation and cracking of long-chain hydrocarbons on Ni-based catalysts. |
doi_str_mv | 10.1039/c9cp05022a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2332079942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2332079942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ae068ce6865cc0bd0eb381494ccdb2dbefdec2f735bf3682e04d222a89958ea03</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYFKeBH4sTLKlBAqoBFu478mJSUNil2ssjf41Logs3MlebM1cxF6JKSO0q4vDfSbElCGFNHaEhjwSNJsvj4oFMxQGferwghNKH8FA04zXjQYogWi9qC862qbVUvsQXYhvLRW9csoVZt1dQ4zLBxynzuiKbEdaS7sAA4zF6rMaX0BuseK_wwnWPfdrY_RyelWnu4-O0jtJg-zvPnaPb29JJPZpHhCWsjBURkBkQmEmOItgQ0z2gsY2OsZlZDacGwMuWJLrnIGJDYsvBmJmWSgSJ8hMZ7361rvjrwbbGpvIH1OlzXdL5gnDOSShmzgF7_Q1dN5-pw3Y6iqeQijgN1u6eMa7x3UBZbV22U6wtKil3YRS7z95-wJwG--rXs9AbsAf1Ll38DbFV3_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331793644</pqid></control><display><type>article</type><title>Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, Chan ; Wang, Li ; Xiao, Zhourong ; Li, Guozhu ; Wang, Lichang</creator><creatorcontrib>Wu, Chan ; Wang, Li ; Xiao, Zhourong ; Li, Guozhu ; Wang, Lichang</creatorcontrib><description>Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addition, understanding the role of catalysis in these pathways is critical toward the advancement in technology, yet is largely lacking. As such, we have performed density functional theory (DFT) calculations to study the two possible C-C cleavage pathways of n-butane on Ni(111), i.e., the (C-C)α,β cleavage from the n-butane deep dehydrogenation product of 1-butyne, and the (C-C)β,β' cleavage from 2-butyne. The results indicate that these two different pathways have distinct dehydrogenations to butyne, and that Ni is suitable for the deep dehydrogenation. The C-C cleavage in both pathways serves as the rate-determining step with a higher energy barrier than that for the preceding C-H bond cleavage. In addition, the 1-butyne pathway was found to be more favorable than that of 2-butyne in thermodynamics and kinetics. Our results provide insights into the alkane dehydrogenation and cracking of long-chain hydrocarbons on Ni-based catalysts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp05022a</identifier><identifier>PMID: 31830156</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alkanes ; Catalysis ; Cleavage ; Covalent bonds ; Cracking (chemical engineering) ; Dehydrogenation ; Density functional theory ; Hydrogen bonds ; Hydrogen production ; Liquefied petroleum gas ; Molecular chains ; Organic chemistry ; Reaction kinetics ; Reforming ; Shale gas ; Shale oil</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (2), p.724-733</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ae068ce6865cc0bd0eb381494ccdb2dbefdec2f735bf3682e04d222a89958ea03</citedby><cites>FETCH-LOGICAL-c352t-ae068ce6865cc0bd0eb381494ccdb2dbefdec2f735bf3682e04d222a89958ea03</cites><orcidid>0000-0003-1329-0548 ; 0000-0002-6131-3532 ; 0000-0002-2539-5753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31830156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chan</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xiao, Zhourong</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Wang, Lichang</creatorcontrib><title>Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addition, understanding the role of catalysis in these pathways is critical toward the advancement in technology, yet is largely lacking. As such, we have performed density functional theory (DFT) calculations to study the two possible C-C cleavage pathways of n-butane on Ni(111), i.e., the (C-C)α,β cleavage from the n-butane deep dehydrogenation product of 1-butyne, and the (C-C)β,β' cleavage from 2-butyne. The results indicate that these two different pathways have distinct dehydrogenations to butyne, and that Ni is suitable for the deep dehydrogenation. The C-C cleavage in both pathways serves as the rate-determining step with a higher energy barrier than that for the preceding C-H bond cleavage. In addition, the 1-butyne pathway was found to be more favorable than that of 2-butyne in thermodynamics and kinetics. Our results provide insights into the alkane dehydrogenation and cracking of long-chain hydrocarbons on Ni-based catalysts.</description><subject>Alkanes</subject><subject>Catalysis</subject><subject>Cleavage</subject><subject>Covalent bonds</subject><subject>Cracking (chemical engineering)</subject><subject>Dehydrogenation</subject><subject>Density functional theory</subject><subject>Hydrogen bonds</subject><subject>Hydrogen production</subject><subject>Liquefied petroleum gas</subject><subject>Molecular chains</subject><subject>Organic chemistry</subject><subject>Reaction kinetics</subject><subject>Reforming</subject><subject>Shale gas</subject><subject>Shale oil</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYFKeBH4sTLKlBAqoBFu478mJSUNil2ssjf41Logs3MlebM1cxF6JKSO0q4vDfSbElCGFNHaEhjwSNJsvj4oFMxQGferwghNKH8FA04zXjQYogWi9qC862qbVUvsQXYhvLRW9csoVZt1dQ4zLBxynzuiKbEdaS7sAA4zF6rMaX0BuseK_wwnWPfdrY_RyelWnu4-O0jtJg-zvPnaPb29JJPZpHhCWsjBURkBkQmEmOItgQ0z2gsY2OsZlZDacGwMuWJLrnIGJDYsvBmJmWSgSJ8hMZ7361rvjrwbbGpvIH1OlzXdL5gnDOSShmzgF7_Q1dN5-pw3Y6iqeQijgN1u6eMa7x3UBZbV22U6wtKil3YRS7z95-wJwG--rXs9AbsAf1Ll38DbFV3_Q</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Wu, Chan</creator><creator>Wang, Li</creator><creator>Xiao, Zhourong</creator><creator>Li, Guozhu</creator><creator>Wang, Lichang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1329-0548</orcidid><orcidid>https://orcid.org/0000-0002-6131-3532</orcidid><orcidid>https://orcid.org/0000-0002-2539-5753</orcidid></search><sort><creationdate>20200102</creationdate><title>Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study</title><author>Wu, Chan ; Wang, Li ; Xiao, Zhourong ; Li, Guozhu ; Wang, Lichang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ae068ce6865cc0bd0eb381494ccdb2dbefdec2f735bf3682e04d222a89958ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkanes</topic><topic>Catalysis</topic><topic>Cleavage</topic><topic>Covalent bonds</topic><topic>Cracking (chemical engineering)</topic><topic>Dehydrogenation</topic><topic>Density functional theory</topic><topic>Hydrogen bonds</topic><topic>Hydrogen production</topic><topic>Liquefied petroleum gas</topic><topic>Molecular chains</topic><topic>Organic chemistry</topic><topic>Reaction kinetics</topic><topic>Reforming</topic><topic>Shale gas</topic><topic>Shale oil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chan</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xiao, Zhourong</creatorcontrib><creatorcontrib>Li, Guozhu</creatorcontrib><creatorcontrib>Wang, Lichang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chan</au><au>Wang, Li</au><au>Xiao, Zhourong</au><au>Li, Guozhu</au><au>Wang, Lichang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>22</volume><issue>2</issue><spage>724</spage><epage>733</epage><pages>724-733</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Steam reforming is a main industrial process for hydrogen production. In particular, with the carbon chain increasing to n-butane, a main component in liquefied petroleum gas (LPG) and shale oil gas, chemically different C-C bonds ((C-C)α,β and (C-C)β,β') will be involved in cleavages. In addition, understanding the role of catalysis in these pathways is critical toward the advancement in technology, yet is largely lacking. As such, we have performed density functional theory (DFT) calculations to study the two possible C-C cleavage pathways of n-butane on Ni(111), i.e., the (C-C)α,β cleavage from the n-butane deep dehydrogenation product of 1-butyne, and the (C-C)β,β' cleavage from 2-butyne. The results indicate that these two different pathways have distinct dehydrogenations to butyne, and that Ni is suitable for the deep dehydrogenation. The C-C cleavage in both pathways serves as the rate-determining step with a higher energy barrier than that for the preceding C-H bond cleavage. In addition, the 1-butyne pathway was found to be more favorable than that of 2-butyne in thermodynamics and kinetics. Our results provide insights into the alkane dehydrogenation and cracking of long-chain hydrocarbons on Ni-based catalysts.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31830156</pmid><doi>10.1039/c9cp05022a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1329-0548</orcidid><orcidid>https://orcid.org/0000-0002-6131-3532</orcidid><orcidid>https://orcid.org/0000-0002-2539-5753</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (2), p.724-733 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2332079942 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Alkanes Catalysis Cleavage Covalent bonds Cracking (chemical engineering) Dehydrogenation Density functional theory Hydrogen bonds Hydrogen production Liquefied petroleum gas Molecular chains Organic chemistry Reaction kinetics Reforming Shale gas Shale oil |
title | Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20deep%20dehydrogenation%20and%20cracking%20of%20n-butane%20on%20Ni(111)%20by%20a%20DFT%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wu,%20Chan&rft.date=2020-01-02&rft.volume=22&rft.issue=2&rft.spage=724&rft.epage=733&rft.pages=724-733&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp05022a&rft_dat=%3Cproquest_cross%3E2332079942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331793644&rft_id=info:pmid/31830156&rfr_iscdi=true |