Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst
•κ-Carrageenan gum stabilized AgNPs nanocatalyst prepared via a greener approach.•Physicochemical properties of nanocatalyst were investigated.•κ-CG-s-AgNPs are spherical in shape, with average size of 12 nm.•Nanocatalyst exhibit fast and superior catalytic performance against organic dyes•The catal...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2020-02, Vol.230, p.115597-115597, Article 115597 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115597 |
---|---|
container_issue | |
container_start_page | 115597 |
container_title | Carbohydrate polymers |
container_volume | 230 |
creator | Pandey, Sadanand Do, Jeong Yeon Kim, Joonwoo Kang, Misook |
description | •κ-Carrageenan gum stabilized AgNPs nanocatalyst prepared via a greener approach.•Physicochemical properties of nanocatalyst were investigated.•κ-CG-s-AgNPs are spherical in shape, with average size of 12 nm.•Nanocatalyst exhibit fast and superior catalytic performance against organic dyes•The catalyst showed excellent stability and good reusability.
Herein, we have reported the synthesis of silver nanoparticles (AgNPs) nanocatalyst by using high-molecular-weight κ-carrageenan. The developed methodology was rapid, facile, ecofriendly and cost effective, which did not require subsequent processing for reduction or stabilization of AgNPs. The physico-chemical characterization was performed by FT-IR, zeta potential (ζ), XRD, TGA, XPS and TEM techniques. The TEM results revealed that the AgNPs were spherical in shape, with average size of 12 nm, and face centered cubic (FCC) structure throughout the polymer matrix and was stable without any protecting or capping reagents over two months. The synthesized nanocatalyst exhibited high catalytic degradation and mineralization of industrially important organic dyes such as Rhodamine B, and methylene blue, with a degradation efficiency of ∼100 % in a very short interval. The fast kinetics of the dye degradation is quite unique compared to the reported literatures based on various catalyst systems where slow kinetics was reported. |
doi_str_mv | 10.1016/j.carbpol.2019.115597 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331623657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861719312652</els_id><sourcerecordid>2331623657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-11df6192d0117cc3c75cbe93b7e4df12ada3f6af4e5dfc3bb94ace92b5342deb3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWi-PoGTpZuqcyVw6KxGxKghudB1yOakp6UxNUmF8NB_CZzJlqluzCTn8l5OPkHPIp5BDfbWcKuHlunfTIod2ClBVbbNHJjBr2gxYWe6TSQ5lmc1qaI7IcQjLPJ0a8kNyxGCWZFBMyDAXIVLRafpmF29uoGiMVRa7SJWIwg3RKqpx4YUW0fYd7Q3VAwa6CbZb0O-vLK3hxQKxEx0NUUjr7CdqGqz7QE_TtF8Ln1JcMm1fY2yIp-TACBfwbHefkNf53cvtQ_b0fP94e_OUKVZXMQPQpoa20DlAoxRTTaUktkw2WGoDRdqLmVqYEittFJOyLYXCtpAVKwuNkp2QyzF37fv3DYbIVzYodE502G8CLxiDukhdTZJWo1T5PgSPhq-9XQk_cMj5ljpf8h11vqXOR-rJd7Gr2MgV6j_XL-YkuB4FmD76YdHzsGWsUFuPKnLd238qfgByk5rT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331623657</pqid></control><display><type>article</type><title>Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst</title><source>Access via ScienceDirect (Elsevier)</source><creator>Pandey, Sadanand ; Do, Jeong Yeon ; Kim, Joonwoo ; Kang, Misook</creator><creatorcontrib>Pandey, Sadanand ; Do, Jeong Yeon ; Kim, Joonwoo ; Kang, Misook</creatorcontrib><description>•κ-Carrageenan gum stabilized AgNPs nanocatalyst prepared via a greener approach.•Physicochemical properties of nanocatalyst were investigated.•κ-CG-s-AgNPs are spherical in shape, with average size of 12 nm.•Nanocatalyst exhibit fast and superior catalytic performance against organic dyes•The catalyst showed excellent stability and good reusability.
Herein, we have reported the synthesis of silver nanoparticles (AgNPs) nanocatalyst by using high-molecular-weight κ-carrageenan. The developed methodology was rapid, facile, ecofriendly and cost effective, which did not require subsequent processing for reduction or stabilization of AgNPs. The physico-chemical characterization was performed by FT-IR, zeta potential (ζ), XRD, TGA, XPS and TEM techniques. The TEM results revealed that the AgNPs were spherical in shape, with average size of 12 nm, and face centered cubic (FCC) structure throughout the polymer matrix and was stable without any protecting or capping reagents over two months. The synthesized nanocatalyst exhibited high catalytic degradation and mineralization of industrially important organic dyes such as Rhodamine B, and methylene blue, with a degradation efficiency of ∼100 % in a very short interval. The fast kinetics of the dye degradation is quite unique compared to the reported literatures based on various catalyst systems where slow kinetics was reported.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2019.115597</identifier><identifier>PMID: 31887912</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Catalytic degradation ; Methylene blue dye ; Rhodamine B dye ; Silver nanoparticles ; κ-Carrageenan gum</subject><ispartof>Carbohydrate polymers, 2020-02, Vol.230, p.115597-115597, Article 115597</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-11df6192d0117cc3c75cbe93b7e4df12ada3f6af4e5dfc3bb94ace92b5342deb3</citedby><cites>FETCH-LOGICAL-c365t-11df6192d0117cc3c75cbe93b7e4df12ada3f6af4e5dfc3bb94ace92b5342deb3</cites><orcidid>0000-0003-2065-897X ; 0000-0002-7199-9881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2019.115597$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31887912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pandey, Sadanand</creatorcontrib><creatorcontrib>Do, Jeong Yeon</creatorcontrib><creatorcontrib>Kim, Joonwoo</creatorcontrib><creatorcontrib>Kang, Misook</creatorcontrib><title>Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•κ-Carrageenan gum stabilized AgNPs nanocatalyst prepared via a greener approach.•Physicochemical properties of nanocatalyst were investigated.•κ-CG-s-AgNPs are spherical in shape, with average size of 12 nm.•Nanocatalyst exhibit fast and superior catalytic performance against organic dyes•The catalyst showed excellent stability and good reusability.
Herein, we have reported the synthesis of silver nanoparticles (AgNPs) nanocatalyst by using high-molecular-weight κ-carrageenan. The developed methodology was rapid, facile, ecofriendly and cost effective, which did not require subsequent processing for reduction or stabilization of AgNPs. The physico-chemical characterization was performed by FT-IR, zeta potential (ζ), XRD, TGA, XPS and TEM techniques. The TEM results revealed that the AgNPs were spherical in shape, with average size of 12 nm, and face centered cubic (FCC) structure throughout the polymer matrix and was stable without any protecting or capping reagents over two months. The synthesized nanocatalyst exhibited high catalytic degradation and mineralization of industrially important organic dyes such as Rhodamine B, and methylene blue, with a degradation efficiency of ∼100 % in a very short interval. The fast kinetics of the dye degradation is quite unique compared to the reported literatures based on various catalyst systems where slow kinetics was reported.</description><subject>Catalytic degradation</subject><subject>Methylene blue dye</subject><subject>Rhodamine B dye</subject><subject>Silver nanoparticles</subject><subject>κ-Carrageenan gum</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWi-PoGTpZuqcyVw6KxGxKghudB1yOakp6UxNUmF8NB_CZzJlqluzCTn8l5OPkHPIp5BDfbWcKuHlunfTIod2ClBVbbNHJjBr2gxYWe6TSQ5lmc1qaI7IcQjLPJ0a8kNyxGCWZFBMyDAXIVLRafpmF29uoGiMVRa7SJWIwg3RKqpx4YUW0fYd7Q3VAwa6CbZb0O-vLK3hxQKxEx0NUUjr7CdqGqz7QE_TtF8Ln1JcMm1fY2yIp-TACBfwbHefkNf53cvtQ_b0fP94e_OUKVZXMQPQpoa20DlAoxRTTaUktkw2WGoDRdqLmVqYEittFJOyLYXCtpAVKwuNkp2QyzF37fv3DYbIVzYodE502G8CLxiDukhdTZJWo1T5PgSPhq-9XQk_cMj5ljpf8h11vqXOR-rJd7Gr2MgV6j_XL-YkuB4FmD76YdHzsGWsUFuPKnLd238qfgByk5rT</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Pandey, Sadanand</creator><creator>Do, Jeong Yeon</creator><creator>Kim, Joonwoo</creator><creator>Kang, Misook</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2065-897X</orcidid><orcidid>https://orcid.org/0000-0002-7199-9881</orcidid></search><sort><creationdate>20200215</creationdate><title>Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst</title><author>Pandey, Sadanand ; Do, Jeong Yeon ; Kim, Joonwoo ; Kang, Misook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-11df6192d0117cc3c75cbe93b7e4df12ada3f6af4e5dfc3bb94ace92b5342deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic degradation</topic><topic>Methylene blue dye</topic><topic>Rhodamine B dye</topic><topic>Silver nanoparticles</topic><topic>κ-Carrageenan gum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Sadanand</creatorcontrib><creatorcontrib>Do, Jeong Yeon</creatorcontrib><creatorcontrib>Kim, Joonwoo</creatorcontrib><creatorcontrib>Kang, Misook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Sadanand</au><au>Do, Jeong Yeon</au><au>Kim, Joonwoo</au><au>Kang, Misook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>230</volume><spage>115597</spage><epage>115597</epage><pages>115597-115597</pages><artnum>115597</artnum><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•κ-Carrageenan gum stabilized AgNPs nanocatalyst prepared via a greener approach.•Physicochemical properties of nanocatalyst were investigated.•κ-CG-s-AgNPs are spherical in shape, with average size of 12 nm.•Nanocatalyst exhibit fast and superior catalytic performance against organic dyes•The catalyst showed excellent stability and good reusability.
Herein, we have reported the synthesis of silver nanoparticles (AgNPs) nanocatalyst by using high-molecular-weight κ-carrageenan. The developed methodology was rapid, facile, ecofriendly and cost effective, which did not require subsequent processing for reduction or stabilization of AgNPs. The physico-chemical characterization was performed by FT-IR, zeta potential (ζ), XRD, TGA, XPS and TEM techniques. The TEM results revealed that the AgNPs were spherical in shape, with average size of 12 nm, and face centered cubic (FCC) structure throughout the polymer matrix and was stable without any protecting or capping reagents over two months. The synthesized nanocatalyst exhibited high catalytic degradation and mineralization of industrially important organic dyes such as Rhodamine B, and methylene blue, with a degradation efficiency of ∼100 % in a very short interval. The fast kinetics of the dye degradation is quite unique compared to the reported literatures based on various catalyst systems where slow kinetics was reported.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31887912</pmid><doi>10.1016/j.carbpol.2019.115597</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2065-897X</orcidid><orcidid>https://orcid.org/0000-0002-7199-9881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2020-02, Vol.230, p.115597-115597, Article 115597 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_2331623657 |
source | Access via ScienceDirect (Elsevier) |
subjects | Catalytic degradation Methylene blue dye Rhodamine B dye Silver nanoparticles κ-Carrageenan gum |
title | Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20highly%20efficient%20catalytic%20degradation%20of%20dyes%20using%20%CE%BA-carrageenan%20stabilized%20silver%20nanoparticles%20nanocatalyst&rft.jtitle=Carbohydrate%20polymers&rft.au=Pandey,%20Sadanand&rft.date=2020-02-15&rft.volume=230&rft.spage=115597&rft.epage=115597&rft.pages=115597-115597&rft.artnum=115597&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2019.115597&rft_dat=%3Cproquest_cross%3E2331623657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331623657&rft_id=info:pmid/31887912&rft_els_id=S0144861719312652&rfr_iscdi=true |