Contribution of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy metabolism and the stemness in CD133‐positive HuH‐7 cells

HuH‐7 cells, derived from human hepatocarcinoma, are known to contain the CD133‐positive cancer stem cell populations. HuH‐7 cells showed higher ATP synthesis activity through the respiratory chain compared to another human hepatocarcinoma cell line HepG2 and showed an especially higher glycerol‐3‐p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes to cells : devoted to molecular & cellular mechanisms 2020-02, Vol.25 (2), p.139-148
Hauptverfasser: Mikeli, Maimaiti, Fujikawa, Makoto, Nagahisa, Kai, Yasuda, Shuhei, Yamada, Natsuhiko, Tanabe, Tsutomu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 2
container_start_page 139
container_title Genes to cells : devoted to molecular & cellular mechanisms
container_volume 25
creator Mikeli, Maimaiti
Fujikawa, Makoto
Nagahisa, Kai
Yasuda, Shuhei
Yamada, Natsuhiko
Tanabe, Tsutomu
description HuH‐7 cells, derived from human hepatocarcinoma, are known to contain the CD133‐positive cancer stem cell populations. HuH‐7 cells showed higher ATP synthesis activity through the respiratory chain compared to another human hepatocarcinoma cell line HepG2 and showed an especially higher glycerol‐3‐phosphate (G3P)‐driven ATP synthesis (G3P‐ATPase) activity. We found that the CD133‐positive HuH‐7 cells expressed high levels of GPD2 (glycerol‐3‐phosphate dehydrogenase or mGPDH) and showed high G3P‐ATPase activity. Next, to elucidate the relationship between CD133 and GPD2, we inhibited downstream factors of CD133 and found that a p38 inhibitor decreased the expression of GPD2 and decreased the G3P‐ATPase activity. Furthermore, GPD2‐knockdown (GPD2‐KD) cells exhibited strong reduction of the G3P‐ATPase activity and reduction of lactic acid secretion. Finally, we validated the effect of GPD2‐KD on tumorigenicity. GPD2‐KD cells were found to show decreased anchorage‐independent cell proliferation, suggesting the linkage of G3P‐ATPase activity to the tumorigenicity of the CD133‐positive HuH‐7 cells. Inhibition of G3P‐ATPase disrupts the homeostasis of energy metabolism and blocks cancer development and progression. Our results suggest inhibitors, targeting GPD2 may be potential new anticancer agents. GPD2 controls G3P‐ATPase activity that constitutes an alternative respiratory chain X and is found to be important for the stemness of CD133‐positive HuH‐7 cells.
doi_str_mv 10.1111/gtc.12744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331622201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352919346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4544-1a7b6211ba889d9dae15133d2e291a4ff4e118a6a3ead9682429ee5032a125573</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi1ERcvAghdAltjAIp0cX3JZorSdQapUFmUdnSQnHVdJPNhO0ex4BJZ9vj4JnpnCAgkvfJG-8x3r_Iy9g_Qc4lrehfYcRK7UC3YGMtOJUEq-3N91lpS6zE_Za-_v0xSkSPUrdiqhKHIh8zP2WNkpONPMwdiJ256vvl6I5Rj3NQ-W48RxCOQmDOaBuCO_NQ6DdTvebtAcKsKG-GiCbTd26pzBgdNE7m7HRwrY2MH4MXq6A-cDjRN5z2NpdQFSPv38tbXeHOzreR2fOW9pGPwbdtLj4Ont87lg364ub6t1cn2z-lJ9vk5apZVKAPMmEwANFkXZlR0S6KjtBIkSUPW9IoACM5SEXZkVQomSSKdSIAitc7lgH4_erbPfZ_KhHo3f_wAnsrOvhZSQCSHi7Bbswz_ovZ3jaIY9pWO_UqosUp-OVOus9476euvMiG5XQ1rv46pjXPUhrsi-fzbOzUjdX_JPPhFYHoEfZqDd_0316rY6Kn8DxY-gNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352919346</pqid></control><display><type>article</type><title>Contribution of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy metabolism and the stemness in CD133‐positive HuH‐7 cells</title><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Mikeli, Maimaiti ; Fujikawa, Makoto ; Nagahisa, Kai ; Yasuda, Shuhei ; Yamada, Natsuhiko ; Tanabe, Tsutomu</creator><creatorcontrib>Mikeli, Maimaiti ; Fujikawa, Makoto ; Nagahisa, Kai ; Yasuda, Shuhei ; Yamada, Natsuhiko ; Tanabe, Tsutomu</creatorcontrib><description>HuH‐7 cells, derived from human hepatocarcinoma, are known to contain the CD133‐positive cancer stem cell populations. HuH‐7 cells showed higher ATP synthesis activity through the respiratory chain compared to another human hepatocarcinoma cell line HepG2 and showed an especially higher glycerol‐3‐phosphate (G3P)‐driven ATP synthesis (G3P‐ATPase) activity. We found that the CD133‐positive HuH‐7 cells expressed high levels of GPD2 (glycerol‐3‐phosphate dehydrogenase or mGPDH) and showed high G3P‐ATPase activity. Next, to elucidate the relationship between CD133 and GPD2, we inhibited downstream factors of CD133 and found that a p38 inhibitor decreased the expression of GPD2 and decreased the G3P‐ATPase activity. Furthermore, GPD2‐knockdown (GPD2‐KD) cells exhibited strong reduction of the G3P‐ATPase activity and reduction of lactic acid secretion. Finally, we validated the effect of GPD2‐KD on tumorigenicity. GPD2‐KD cells were found to show decreased anchorage‐independent cell proliferation, suggesting the linkage of G3P‐ATPase activity to the tumorigenicity of the CD133‐positive HuH‐7 cells. Inhibition of G3P‐ATPase disrupts the homeostasis of energy metabolism and blocks cancer development and progression. Our results suggest inhibitors, targeting GPD2 may be potential new anticancer agents. GPD2 controls G3P‐ATPase activity that constitutes an alternative respiratory chain X and is found to be important for the stemness of CD133‐positive HuH‐7 cells.</description><identifier>ISSN: 1356-9597</identifier><identifier>EISSN: 1365-2443</identifier><identifier>DOI: 10.1111/gtc.12744</identifier><identifier>PMID: 31887237</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adenosine triphosphatase ; alternative respiratory chain ; Antitumor agents ; cancer stem cell ; CD133 ; Cell proliferation ; Electron transport ; Energy metabolism ; Glycerol ; glycerol‐3‐phosphate ; GPD2 ; Hepatocellular carcinoma ; Homeostasis ; Lactic acid ; Metabolism ; Mitochondria ; Stem cells ; Tumorigenicity</subject><ispartof>Genes to cells : devoted to molecular &amp; cellular mechanisms, 2020-02, Vol.25 (2), p.139-148</ispartof><rights>2019 Molecular Biology Society of Japan and John Wiley &amp; Sons Australia, Ltd</rights><rights>2019 Molecular Biology Society of Japan and John Wiley &amp; Sons Australia, Ltd.</rights><rights>2020 Molecular Biology Society of Japan and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4544-1a7b6211ba889d9dae15133d2e291a4ff4e118a6a3ead9682429ee5032a125573</citedby><cites>FETCH-LOGICAL-c4544-1a7b6211ba889d9dae15133d2e291a4ff4e118a6a3ead9682429ee5032a125573</cites><orcidid>0000-0003-3000-9105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgtc.12744$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgtc.12744$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31887237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikeli, Maimaiti</creatorcontrib><creatorcontrib>Fujikawa, Makoto</creatorcontrib><creatorcontrib>Nagahisa, Kai</creatorcontrib><creatorcontrib>Yasuda, Shuhei</creatorcontrib><creatorcontrib>Yamada, Natsuhiko</creatorcontrib><creatorcontrib>Tanabe, Tsutomu</creatorcontrib><title>Contribution of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy metabolism and the stemness in CD133‐positive HuH‐7 cells</title><title>Genes to cells : devoted to molecular &amp; cellular mechanisms</title><addtitle>Genes Cells</addtitle><description>HuH‐7 cells, derived from human hepatocarcinoma, are known to contain the CD133‐positive cancer stem cell populations. HuH‐7 cells showed higher ATP synthesis activity through the respiratory chain compared to another human hepatocarcinoma cell line HepG2 and showed an especially higher glycerol‐3‐phosphate (G3P)‐driven ATP synthesis (G3P‐ATPase) activity. We found that the CD133‐positive HuH‐7 cells expressed high levels of GPD2 (glycerol‐3‐phosphate dehydrogenase or mGPDH) and showed high G3P‐ATPase activity. Next, to elucidate the relationship between CD133 and GPD2, we inhibited downstream factors of CD133 and found that a p38 inhibitor decreased the expression of GPD2 and decreased the G3P‐ATPase activity. Furthermore, GPD2‐knockdown (GPD2‐KD) cells exhibited strong reduction of the G3P‐ATPase activity and reduction of lactic acid secretion. Finally, we validated the effect of GPD2‐KD on tumorigenicity. GPD2‐KD cells were found to show decreased anchorage‐independent cell proliferation, suggesting the linkage of G3P‐ATPase activity to the tumorigenicity of the CD133‐positive HuH‐7 cells. Inhibition of G3P‐ATPase disrupts the homeostasis of energy metabolism and blocks cancer development and progression. Our results suggest inhibitors, targeting GPD2 may be potential new anticancer agents. GPD2 controls G3P‐ATPase activity that constitutes an alternative respiratory chain X and is found to be important for the stemness of CD133‐positive HuH‐7 cells.</description><subject>Adenosine triphosphatase</subject><subject>alternative respiratory chain</subject><subject>Antitumor agents</subject><subject>cancer stem cell</subject><subject>CD133</subject><subject>Cell proliferation</subject><subject>Electron transport</subject><subject>Energy metabolism</subject><subject>Glycerol</subject><subject>glycerol‐3‐phosphate</subject><subject>GPD2</subject><subject>Hepatocellular carcinoma</subject><subject>Homeostasis</subject><subject>Lactic acid</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Stem cells</subject><subject>Tumorigenicity</subject><issn>1356-9597</issn><issn>1365-2443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhi1ERcvAghdAltjAIp0cX3JZorSdQapUFmUdnSQnHVdJPNhO0ex4BJZ9vj4JnpnCAgkvfJG-8x3r_Iy9g_Qc4lrehfYcRK7UC3YGMtOJUEq-3N91lpS6zE_Za-_v0xSkSPUrdiqhKHIh8zP2WNkpONPMwdiJ256vvl6I5Rj3NQ-W48RxCOQmDOaBuCO_NQ6DdTvebtAcKsKG-GiCbTd26pzBgdNE7m7HRwrY2MH4MXq6A-cDjRN5z2NpdQFSPv38tbXeHOzreR2fOW9pGPwbdtLj4Ont87lg364ub6t1cn2z-lJ9vk5apZVKAPMmEwANFkXZlR0S6KjtBIkSUPW9IoACM5SEXZkVQomSSKdSIAitc7lgH4_erbPfZ_KhHo3f_wAnsrOvhZSQCSHi7Bbswz_ovZ3jaIY9pWO_UqosUp-OVOus9476euvMiG5XQ1rv46pjXPUhrsi-fzbOzUjdX_JPPhFYHoEfZqDd_0316rY6Kn8DxY-gNQ</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Mikeli, Maimaiti</creator><creator>Fujikawa, Makoto</creator><creator>Nagahisa, Kai</creator><creator>Yasuda, Shuhei</creator><creator>Yamada, Natsuhiko</creator><creator>Tanabe, Tsutomu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3000-9105</orcidid></search><sort><creationdate>202002</creationdate><title>Contribution of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy metabolism and the stemness in CD133‐positive HuH‐7 cells</title><author>Mikeli, Maimaiti ; Fujikawa, Makoto ; Nagahisa, Kai ; Yasuda, Shuhei ; Yamada, Natsuhiko ; Tanabe, Tsutomu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4544-1a7b6211ba889d9dae15133d2e291a4ff4e118a6a3ead9682429ee5032a125573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine triphosphatase</topic><topic>alternative respiratory chain</topic><topic>Antitumor agents</topic><topic>cancer stem cell</topic><topic>CD133</topic><topic>Cell proliferation</topic><topic>Electron transport</topic><topic>Energy metabolism</topic><topic>Glycerol</topic><topic>glycerol‐3‐phosphate</topic><topic>GPD2</topic><topic>Hepatocellular carcinoma</topic><topic>Homeostasis</topic><topic>Lactic acid</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Stem cells</topic><topic>Tumorigenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikeli, Maimaiti</creatorcontrib><creatorcontrib>Fujikawa, Makoto</creatorcontrib><creatorcontrib>Nagahisa, Kai</creatorcontrib><creatorcontrib>Yasuda, Shuhei</creatorcontrib><creatorcontrib>Yamada, Natsuhiko</creatorcontrib><creatorcontrib>Tanabe, Tsutomu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes to cells : devoted to molecular &amp; cellular mechanisms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikeli, Maimaiti</au><au>Fujikawa, Makoto</au><au>Nagahisa, Kai</au><au>Yasuda, Shuhei</au><au>Yamada, Natsuhiko</au><au>Tanabe, Tsutomu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy metabolism and the stemness in CD133‐positive HuH‐7 cells</atitle><jtitle>Genes to cells : devoted to molecular &amp; cellular mechanisms</jtitle><addtitle>Genes Cells</addtitle><date>2020-02</date><risdate>2020</risdate><volume>25</volume><issue>2</issue><spage>139</spage><epage>148</epage><pages>139-148</pages><issn>1356-9597</issn><eissn>1365-2443</eissn><abstract>HuH‐7 cells, derived from human hepatocarcinoma, are known to contain the CD133‐positive cancer stem cell populations. HuH‐7 cells showed higher ATP synthesis activity through the respiratory chain compared to another human hepatocarcinoma cell line HepG2 and showed an especially higher glycerol‐3‐phosphate (G3P)‐driven ATP synthesis (G3P‐ATPase) activity. We found that the CD133‐positive HuH‐7 cells expressed high levels of GPD2 (glycerol‐3‐phosphate dehydrogenase or mGPDH) and showed high G3P‐ATPase activity. Next, to elucidate the relationship between CD133 and GPD2, we inhibited downstream factors of CD133 and found that a p38 inhibitor decreased the expression of GPD2 and decreased the G3P‐ATPase activity. Furthermore, GPD2‐knockdown (GPD2‐KD) cells exhibited strong reduction of the G3P‐ATPase activity and reduction of lactic acid secretion. Finally, we validated the effect of GPD2‐KD on tumorigenicity. GPD2‐KD cells were found to show decreased anchorage‐independent cell proliferation, suggesting the linkage of G3P‐ATPase activity to the tumorigenicity of the CD133‐positive HuH‐7 cells. Inhibition of G3P‐ATPase disrupts the homeostasis of energy metabolism and blocks cancer development and progression. Our results suggest inhibitors, targeting GPD2 may be potential new anticancer agents. GPD2 controls G3P‐ATPase activity that constitutes an alternative respiratory chain X and is found to be important for the stemness of CD133‐positive HuH‐7 cells.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31887237</pmid><doi>10.1111/gtc.12744</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3000-9105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1356-9597
ispartof Genes to cells : devoted to molecular & cellular mechanisms, 2020-02, Vol.25 (2), p.139-148
issn 1356-9597
1365-2443
language eng
recordid cdi_proquest_miscellaneous_2331622201
source Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Adenosine triphosphatase
alternative respiratory chain
Antitumor agents
cancer stem cell
CD133
Cell proliferation
Electron transport
Energy metabolism
Glycerol
glycerol‐3‐phosphate
GPD2
Hepatocellular carcinoma
Homeostasis
Lactic acid
Metabolism
Mitochondria
Stem cells
Tumorigenicity
title Contribution of GPD2/mGPDH to an alternative respiratory chain of the mitochondrial energy metabolism and the stemness in CD133‐positive HuH‐7 cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20GPD2/mGPDH%20to%20an%20alternative%20respiratory%20chain%20of%20the%20mitochondrial%20energy%20metabolism%20and%20the%20stemness%20in%20CD133%E2%80%90positive%20HuH%E2%80%907%20cells&rft.jtitle=Genes%20to%20cells%20:%20devoted%20to%20molecular%20&%20cellular%20mechanisms&rft.au=Mikeli,%20Maimaiti&rft.date=2020-02&rft.volume=25&rft.issue=2&rft.spage=139&rft.epage=148&rft.pages=139-148&rft.issn=1356-9597&rft.eissn=1365-2443&rft_id=info:doi/10.1111/gtc.12744&rft_dat=%3Cproquest_cross%3E2352919346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352919346&rft_id=info:pmid/31887237&rfr_iscdi=true