Mixed-dimensional heterostructures of hydrophobic/hydrophilic graphene foam for tunable hydrogen evolution reaction
The synergetic effect of hydrophilic and hydrophobic carbon can be used to obtain tunable hydrogen evolution reaction (HER) at the interface. Herein, graphene oxide (GO-Hummers method) was coated on graphene foam (GF) synthesized via chemical vapor deposition to develop mixed-dimensional heterostruc...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2020-04, Vol.245, p.125607-125607, Article 125607 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125607 |
---|---|
container_issue | |
container_start_page | 125607 |
container_title | Chemosphere (Oxford) |
container_volume | 245 |
creator | Aslam, Sehrish Sagar, Rizwan Ur Rehman Kumar, Hitanshu Zhang, Gaowei Nosheen, Farhat Namvari, Mina Mahmood, Nasir Zhang, Min Qiu, Yejun |
description | The synergetic effect of hydrophilic and hydrophobic carbon can be used to obtain tunable hydrogen evolution reaction (HER) at the interface. Herein, graphene oxide (GO-Hummers method) was coated on graphene foam (GF) synthesized via chemical vapor deposition to develop mixed-dimensional heterostructure for the observation of HER. The porosity of GF not only provides an optimized diffusion coefficient for better mass transport but also modified surface chemistry (GF/GO-hydrophobic/hydrophilic interface), which results in an onset potential 50 mV and overpotential of 450 mV to achieve the current density 10 mA/cm2. The surface analysis shows that inherent functional groups at the surface played a key role in tuning the activity of hybrid, providing a pathway to introduce non-corrosive electrodes for water splitting.
[Display omitted]
•The GO coating on GF can make it effective towards HER.•The 3D framework provides high mas flow and faster ionic transfer.•Combination of hydro-phobic/-philic surfaces optimizes water ad/desorption energies.•A unique hydro-phobic/-philic interface acts as active site for HER. |
doi_str_mv | 10.1016/j.chemosphere.2019.125607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331430114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653519328474</els_id><sourcerecordid>2331430114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-8562060340a2ee25a514bac99cbd0d87f0256bfdf3042edbd870b8bd5f6e87883</originalsourceid><addsrcrecordid>eNqNkM1u2zAQhIkgQeI6eYVCveUieymKEnUsjKQtkKKX5EzwZ2XRkESXlILm7UNDbpFjL8sFMbO78xHyhcKGAq22h43pcPDx2GHATQG02dCCV1BfkBUVdZPTohGXZAVQ8rzijN-QTzEeAJKZN9fkhlEhSlqXKxJ_uj9oc-sGHKPzo-qzDicMPk5hNtMcMGa-zbo3G_yx89qZ7bl3vTPZPqh0xIhZ69WQSsimeVS6x8WxxzHDV9_PUxqdBVTm1NySq1b1Ee_O75q8PD48777nT7--_dh9fcoNq-spF7wqoAJWgioQC644LbUyTWO0BSvqFlJm3dqWQVmg1ekLtNCWtxWKWgi2JvfL3GPwv2eMkxxcNNj3akQ_R1kwRksGNJU1aRapScljwFYegxtUeJMU5Im5PMgPzOWJuVyYJ-_n85pZD2j_Of9CToLdIsAU9tVhkNE4HA1aF9BM0nr3H2veAQ6mnH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331430114</pqid></control><display><type>article</type><title>Mixed-dimensional heterostructures of hydrophobic/hydrophilic graphene foam for tunable hydrogen evolution reaction</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Aslam, Sehrish ; Sagar, Rizwan Ur Rehman ; Kumar, Hitanshu ; Zhang, Gaowei ; Nosheen, Farhat ; Namvari, Mina ; Mahmood, Nasir ; Zhang, Min ; Qiu, Yejun</creator><creatorcontrib>Aslam, Sehrish ; Sagar, Rizwan Ur Rehman ; Kumar, Hitanshu ; Zhang, Gaowei ; Nosheen, Farhat ; Namvari, Mina ; Mahmood, Nasir ; Zhang, Min ; Qiu, Yejun</creatorcontrib><description>The synergetic effect of hydrophilic and hydrophobic carbon can be used to obtain tunable hydrogen evolution reaction (HER) at the interface. Herein, graphene oxide (GO-Hummers method) was coated on graphene foam (GF) synthesized via chemical vapor deposition to develop mixed-dimensional heterostructure for the observation of HER. The porosity of GF not only provides an optimized diffusion coefficient for better mass transport but also modified surface chemistry (GF/GO-hydrophobic/hydrophilic interface), which results in an onset potential 50 mV and overpotential of 450 mV to achieve the current density 10 mA/cm2. The surface analysis shows that inherent functional groups at the surface played a key role in tuning the activity of hybrid, providing a pathway to introduce non-corrosive electrodes for water splitting.
[Display omitted]
•The GO coating on GF can make it effective towards HER.•The 3D framework provides high mas flow and faster ionic transfer.•Combination of hydro-phobic/-philic surfaces optimizes water ad/desorption energies.•A unique hydro-phobic/-philic interface acts as active site for HER.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2019.125607</identifier><identifier>PMID: 31884174</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Carbon - chemistry ; Catalysis ; Electrodes ; Graphene foam ; Graphene oxide ; Graphite - chemistry ; Heterostructure ; Hydrogen - chemistry ; Hydrogen evolution reaction ; Hydrophobic and Hydrophilic Interactions ; Hydrophobic/hydrophilic interface ; Porosity ; Water - chemistry</subject><ispartof>Chemosphere (Oxford), 2020-04, Vol.245, p.125607-125607, Article 125607</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-8562060340a2ee25a514bac99cbd0d87f0256bfdf3042edbd870b8bd5f6e87883</citedby><cites>FETCH-LOGICAL-c377t-8562060340a2ee25a514bac99cbd0d87f0256bfdf3042edbd870b8bd5f6e87883</cites><orcidid>0000-0002-8729-6208 ; 0000-0003-0519-0424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653519328474$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31884174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aslam, Sehrish</creatorcontrib><creatorcontrib>Sagar, Rizwan Ur Rehman</creatorcontrib><creatorcontrib>Kumar, Hitanshu</creatorcontrib><creatorcontrib>Zhang, Gaowei</creatorcontrib><creatorcontrib>Nosheen, Farhat</creatorcontrib><creatorcontrib>Namvari, Mina</creatorcontrib><creatorcontrib>Mahmood, Nasir</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Qiu, Yejun</creatorcontrib><title>Mixed-dimensional heterostructures of hydrophobic/hydrophilic graphene foam for tunable hydrogen evolution reaction</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The synergetic effect of hydrophilic and hydrophobic carbon can be used to obtain tunable hydrogen evolution reaction (HER) at the interface. Herein, graphene oxide (GO-Hummers method) was coated on graphene foam (GF) synthesized via chemical vapor deposition to develop mixed-dimensional heterostructure for the observation of HER. The porosity of GF not only provides an optimized diffusion coefficient for better mass transport but also modified surface chemistry (GF/GO-hydrophobic/hydrophilic interface), which results in an onset potential 50 mV and overpotential of 450 mV to achieve the current density 10 mA/cm2. The surface analysis shows that inherent functional groups at the surface played a key role in tuning the activity of hybrid, providing a pathway to introduce non-corrosive electrodes for water splitting.
[Display omitted]
•The GO coating on GF can make it effective towards HER.•The 3D framework provides high mas flow and faster ionic transfer.•Combination of hydro-phobic/-philic surfaces optimizes water ad/desorption energies.•A unique hydro-phobic/-philic interface acts as active site for HER.</description><subject>Carbon - chemistry</subject><subject>Catalysis</subject><subject>Electrodes</subject><subject>Graphene foam</subject><subject>Graphene oxide</subject><subject>Graphite - chemistry</subject><subject>Heterostructure</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen evolution reaction</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobic/hydrophilic interface</subject><subject>Porosity</subject><subject>Water - chemistry</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1u2zAQhIkgQeI6eYVCveUieymKEnUsjKQtkKKX5EzwZ2XRkESXlILm7UNDbpFjL8sFMbO78xHyhcKGAq22h43pcPDx2GHATQG02dCCV1BfkBUVdZPTohGXZAVQ8rzijN-QTzEeAJKZN9fkhlEhSlqXKxJ_uj9oc-sGHKPzo-qzDicMPk5hNtMcMGa-zbo3G_yx89qZ7bl3vTPZPqh0xIhZ69WQSsimeVS6x8WxxzHDV9_PUxqdBVTm1NySq1b1Ee_O75q8PD48777nT7--_dh9fcoNq-spF7wqoAJWgioQC644LbUyTWO0BSvqFlJm3dqWQVmg1ekLtNCWtxWKWgi2JvfL3GPwv2eMkxxcNNj3akQ_R1kwRksGNJU1aRapScljwFYegxtUeJMU5Im5PMgPzOWJuVyYJ-_n85pZD2j_Of9CToLdIsAU9tVhkNE4HA1aF9BM0nr3H2veAQ6mnH4</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Aslam, Sehrish</creator><creator>Sagar, Rizwan Ur Rehman</creator><creator>Kumar, Hitanshu</creator><creator>Zhang, Gaowei</creator><creator>Nosheen, Farhat</creator><creator>Namvari, Mina</creator><creator>Mahmood, Nasir</creator><creator>Zhang, Min</creator><creator>Qiu, Yejun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8729-6208</orcidid><orcidid>https://orcid.org/0000-0003-0519-0424</orcidid></search><sort><creationdate>202004</creationdate><title>Mixed-dimensional heterostructures of hydrophobic/hydrophilic graphene foam for tunable hydrogen evolution reaction</title><author>Aslam, Sehrish ; Sagar, Rizwan Ur Rehman ; Kumar, Hitanshu ; Zhang, Gaowei ; Nosheen, Farhat ; Namvari, Mina ; Mahmood, Nasir ; Zhang, Min ; Qiu, Yejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-8562060340a2ee25a514bac99cbd0d87f0256bfdf3042edbd870b8bd5f6e87883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon - chemistry</topic><topic>Catalysis</topic><topic>Electrodes</topic><topic>Graphene foam</topic><topic>Graphene oxide</topic><topic>Graphite - chemistry</topic><topic>Heterostructure</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen evolution reaction</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobic/hydrophilic interface</topic><topic>Porosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslam, Sehrish</creatorcontrib><creatorcontrib>Sagar, Rizwan Ur Rehman</creatorcontrib><creatorcontrib>Kumar, Hitanshu</creatorcontrib><creatorcontrib>Zhang, Gaowei</creatorcontrib><creatorcontrib>Nosheen, Farhat</creatorcontrib><creatorcontrib>Namvari, Mina</creatorcontrib><creatorcontrib>Mahmood, Nasir</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Qiu, Yejun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslam, Sehrish</au><au>Sagar, Rizwan Ur Rehman</au><au>Kumar, Hitanshu</au><au>Zhang, Gaowei</au><au>Nosheen, Farhat</au><au>Namvari, Mina</au><au>Mahmood, Nasir</au><au>Zhang, Min</au><au>Qiu, Yejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-dimensional heterostructures of hydrophobic/hydrophilic graphene foam for tunable hydrogen evolution reaction</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2020-04</date><risdate>2020</risdate><volume>245</volume><spage>125607</spage><epage>125607</epage><pages>125607-125607</pages><artnum>125607</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The synergetic effect of hydrophilic and hydrophobic carbon can be used to obtain tunable hydrogen evolution reaction (HER) at the interface. Herein, graphene oxide (GO-Hummers method) was coated on graphene foam (GF) synthesized via chemical vapor deposition to develop mixed-dimensional heterostructure for the observation of HER. The porosity of GF not only provides an optimized diffusion coefficient for better mass transport but also modified surface chemistry (GF/GO-hydrophobic/hydrophilic interface), which results in an onset potential 50 mV and overpotential of 450 mV to achieve the current density 10 mA/cm2. The surface analysis shows that inherent functional groups at the surface played a key role in tuning the activity of hybrid, providing a pathway to introduce non-corrosive electrodes for water splitting.
[Display omitted]
•The GO coating on GF can make it effective towards HER.•The 3D framework provides high mas flow and faster ionic transfer.•Combination of hydro-phobic/-philic surfaces optimizes water ad/desorption energies.•A unique hydro-phobic/-philic interface acts as active site for HER.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31884174</pmid><doi>10.1016/j.chemosphere.2019.125607</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8729-6208</orcidid><orcidid>https://orcid.org/0000-0003-0519-0424</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2020-04, Vol.245, p.125607-125607, Article 125607 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2331430114 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Carbon - chemistry Catalysis Electrodes Graphene foam Graphene oxide Graphite - chemistry Heterostructure Hydrogen - chemistry Hydrogen evolution reaction Hydrophobic and Hydrophilic Interactions Hydrophobic/hydrophilic interface Porosity Water - chemistry |
title | Mixed-dimensional heterostructures of hydrophobic/hydrophilic graphene foam for tunable hydrogen evolution reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-dimensional%20heterostructures%20of%20hydrophobic/hydrophilic%20graphene%20foam%20for%20tunable%20hydrogen%20evolution%20reaction&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Aslam,%20Sehrish&rft.date=2020-04&rft.volume=245&rft.spage=125607&rft.epage=125607&rft.pages=125607-125607&rft.artnum=125607&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2019.125607&rft_dat=%3Cproquest_cross%3E2331430114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331430114&rft_id=info:pmid/31884174&rft_els_id=S0045653519328474&rfr_iscdi=true |