Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications
Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments....
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2020-03, Vol.20 (3), p.e1900300-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e1900300 |
container_title | Macromolecular bioscience |
container_volume | 20 |
creator | Jo, Heejung Yoon, Minhyuk Gajendiran, Mani Kim, Kyobum |
description | Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration.
Gradient formation in hydrogels is a promising strategy for accessing complete imitation of the natural microcellular or tissue environments. Herein, this review summarizes representative strategies for fabrication of gradient hydrogels and their applications in the field of tissue engineering. |
doi_str_mv | 10.1002/mabi.201900300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331427094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371624820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-3e639ac3af7880744d119eb22fc2c3a09e2819b3d893bd52f0573e3f43414c843</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTq0cJePHSma-2yXGOfcFE0HnxUtL2bcno2pq0yP57WzYnePGUEH7vQ94HoVtKxpQQ9rjTsRkzQhUhnJAzNKQBDTyfKv_8dJfhAF05tyWEhlKxSzTgVMogoGKIPl4hgbLBb43VDeQGHDYlnuvYmkQ3pipxleGF1anp1XKf2iqHwuGssnhjnGsBz8rclADWlDme1HVxHHTX6CLThYOb4zlC7_PZZrr01i-L1XSy9hLRreBxCLjSCddZKCUJhUgpVRAzliWseyUKmKQq5qlUPE59lhE_5MAzwQUViRR8hB4OubWtPltwTbQzLoGi0CVUrYsY51SwkKie3v-h26q1Zfe7ToU0YEIy0qnxQSW2cs5CFtXW7LTdR5REfetR33p0ar0buDvGtvEO0hP_qbkD6gC-TAH7f-Ki58nT6jf8G3zyjRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371624820</pqid></control><display><type>article</type><title>Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jo, Heejung ; Yoon, Minhyuk ; Gajendiran, Mani ; Kim, Kyobum</creator><creatorcontrib>Jo, Heejung ; Yoon, Minhyuk ; Gajendiran, Mani ; Kim, Kyobum</creatorcontrib><description>Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration.
Gradient formation in hydrogels is a promising strategy for accessing complete imitation of the natural microcellular or tissue environments. Herein, this review summarizes representative strategies for fabrication of gradient hydrogels and their applications in the field of tissue engineering.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201900300</identifier><identifier>PMID: 31886614</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biomimetic Materials - chemistry ; Biomimetic Materials - therapeutic use ; Bioprinting ; Chemical properties ; Diffusion pumps ; Fabrication ; gradient hydrogels ; Humans ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - therapeutic use ; Microenvironments ; microfluidic device ; Microfluidic devices ; Microfluidics ; Mimicry ; Models, Biological ; Photolithography ; Regeneration ; Regeneration - drug effects ; Stem Cells - cytology ; Stem Cells - metabolism ; syringe pump system ; Tissue Engineering</subject><ispartof>Macromolecular bioscience, 2020-03, Vol.20 (3), p.e1900300-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-3e639ac3af7880744d119eb22fc2c3a09e2819b3d893bd52f0573e3f43414c843</citedby><cites>FETCH-LOGICAL-c4100-3e639ac3af7880744d119eb22fc2c3a09e2819b3d893bd52f0573e3f43414c843</cites><orcidid>0000-0003-3678-2078 ; 0000-0001-8670-7936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.201900300$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.201900300$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31886614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Heejung</creatorcontrib><creatorcontrib>Yoon, Minhyuk</creatorcontrib><creatorcontrib>Gajendiran, Mani</creatorcontrib><creatorcontrib>Kim, Kyobum</creatorcontrib><title>Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration.
Gradient formation in hydrogels is a promising strategy for accessing complete imitation of the natural microcellular or tissue environments. Herein, this review summarizes representative strategies for fabrication of gradient hydrogels and their applications in the field of tissue engineering.</description><subject>Animals</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - therapeutic use</subject><subject>Bioprinting</subject><subject>Chemical properties</subject><subject>Diffusion pumps</subject><subject>Fabrication</subject><subject>gradient hydrogels</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - therapeutic use</subject><subject>Microenvironments</subject><subject>microfluidic device</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Mimicry</subject><subject>Models, Biological</subject><subject>Photolithography</subject><subject>Regeneration</subject><subject>Regeneration - drug effects</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>syringe pump system</subject><subject>Tissue Engineering</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1LwzAYBvAgipvTq0cJePHSma-2yXGOfcFE0HnxUtL2bcno2pq0yP57WzYnePGUEH7vQ94HoVtKxpQQ9rjTsRkzQhUhnJAzNKQBDTyfKv_8dJfhAF05tyWEhlKxSzTgVMogoGKIPl4hgbLBb43VDeQGHDYlnuvYmkQ3pipxleGF1anp1XKf2iqHwuGssnhjnGsBz8rclADWlDme1HVxHHTX6CLThYOb4zlC7_PZZrr01i-L1XSy9hLRreBxCLjSCddZKCUJhUgpVRAzliWseyUKmKQq5qlUPE59lhE_5MAzwQUViRR8hB4OubWtPltwTbQzLoGi0CVUrYsY51SwkKie3v-h26q1Zfe7ToU0YEIy0qnxQSW2cs5CFtXW7LTdR5REfetR33p0ar0buDvGtvEO0hP_qbkD6gC-TAH7f-Ki58nT6jf8G3zyjRU</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Jo, Heejung</creator><creator>Yoon, Minhyuk</creator><creator>Gajendiran, Mani</creator><creator>Kim, Kyobum</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3678-2078</orcidid><orcidid>https://orcid.org/0000-0001-8670-7936</orcidid></search><sort><creationdate>202003</creationdate><title>Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications</title><author>Jo, Heejung ; Yoon, Minhyuk ; Gajendiran, Mani ; Kim, Kyobum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-3e639ac3af7880744d119eb22fc2c3a09e2819b3d893bd52f0573e3f43414c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - therapeutic use</topic><topic>Bioprinting</topic><topic>Chemical properties</topic><topic>Diffusion pumps</topic><topic>Fabrication</topic><topic>gradient hydrogels</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - therapeutic use</topic><topic>Microenvironments</topic><topic>microfluidic device</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Mimicry</topic><topic>Models, Biological</topic><topic>Photolithography</topic><topic>Regeneration</topic><topic>Regeneration - drug effects</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>syringe pump system</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Heejung</creatorcontrib><creatorcontrib>Yoon, Minhyuk</creatorcontrib><creatorcontrib>Gajendiran, Mani</creatorcontrib><creatorcontrib>Kim, Kyobum</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Heejung</au><au>Yoon, Minhyuk</au><au>Gajendiran, Mani</au><au>Kim, Kyobum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2020-03</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>e1900300</spage><epage>n/a</epage><pages>e1900300-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration.
Gradient formation in hydrogels is a promising strategy for accessing complete imitation of the natural microcellular or tissue environments. Herein, this review summarizes representative strategies for fabrication of gradient hydrogels and their applications in the field of tissue engineering.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31886614</pmid><doi>10.1002/mabi.201900300</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3678-2078</orcidid><orcidid>https://orcid.org/0000-0001-8670-7936</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2020-03, Vol.20 (3), p.e1900300-n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_2331427094 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biomimetic Materials - chemistry Biomimetic Materials - therapeutic use Bioprinting Chemical properties Diffusion pumps Fabrication gradient hydrogels Humans Hydrogels Hydrogels - chemistry Hydrogels - therapeutic use Microenvironments microfluidic device Microfluidic devices Microfluidics Mimicry Models, Biological Photolithography Regeneration Regeneration - drug effects Stem Cells - cytology Stem Cells - metabolism syringe pump system Tissue Engineering |
title | Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Strategies%20in%20Fabrication%20of%20Gradient%20Hydrogels%20for%20Tissue%20Engineering%20Applications&rft.jtitle=Macromolecular%20bioscience&rft.au=Jo,%20Heejung&rft.date=2020-03&rft.volume=20&rft.issue=3&rft.spage=e1900300&rft.epage=n/a&rft.pages=e1900300-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201900300&rft_dat=%3Cproquest_cross%3E2371624820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371624820&rft_id=info:pmid/31886614&rfr_iscdi=true |