Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications

Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2020-03, Vol.20 (3), p.e1900300-n/a
Hauptverfasser: Jo, Heejung, Yoon, Minhyuk, Gajendiran, Mani, Kim, Kyobum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e1900300
container_title Macromolecular bioscience
container_volume 20
creator Jo, Heejung
Yoon, Minhyuk
Gajendiran, Mani
Kim, Kyobum
description Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration. Gradient formation in hydrogels is a promising strategy for accessing complete imitation of the natural microcellular or tissue environments. Herein, this review summarizes representative strategies for fabrication of gradient hydrogels and their applications in the field of tissue engineering.
doi_str_mv 10.1002/mabi.201900300
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331427094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371624820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-3e639ac3af7880744d119eb22fc2c3a09e2819b3d893bd52f0573e3f43414c843</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTq0cJePHSma-2yXGOfcFE0HnxUtL2bcno2pq0yP57WzYnePGUEH7vQ94HoVtKxpQQ9rjTsRkzQhUhnJAzNKQBDTyfKv_8dJfhAF05tyWEhlKxSzTgVMogoGKIPl4hgbLBb43VDeQGHDYlnuvYmkQ3pipxleGF1anp1XKf2iqHwuGssnhjnGsBz8rclADWlDme1HVxHHTX6CLThYOb4zlC7_PZZrr01i-L1XSy9hLRreBxCLjSCddZKCUJhUgpVRAzliWseyUKmKQq5qlUPE59lhE_5MAzwQUViRR8hB4OubWtPltwTbQzLoGi0CVUrYsY51SwkKie3v-h26q1Zfe7ToU0YEIy0qnxQSW2cs5CFtXW7LTdR5REfetR33p0ar0buDvGtvEO0hP_qbkD6gC-TAH7f-Ki58nT6jf8G3zyjRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371624820</pqid></control><display><type>article</type><title>Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jo, Heejung ; Yoon, Minhyuk ; Gajendiran, Mani ; Kim, Kyobum</creator><creatorcontrib>Jo, Heejung ; Yoon, Minhyuk ; Gajendiran, Mani ; Kim, Kyobum</creatorcontrib><description>Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration. Gradient formation in hydrogels is a promising strategy for accessing complete imitation of the natural microcellular or tissue environments. Herein, this review summarizes representative strategies for fabrication of gradient hydrogels and their applications in the field of tissue engineering.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201900300</identifier><identifier>PMID: 31886614</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biomimetic Materials - chemistry ; Biomimetic Materials - therapeutic use ; Bioprinting ; Chemical properties ; Diffusion pumps ; Fabrication ; gradient hydrogels ; Humans ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - therapeutic use ; Microenvironments ; microfluidic device ; Microfluidic devices ; Microfluidics ; Mimicry ; Models, Biological ; Photolithography ; Regeneration ; Regeneration - drug effects ; Stem Cells - cytology ; Stem Cells - metabolism ; syringe pump system ; Tissue Engineering</subject><ispartof>Macromolecular bioscience, 2020-03, Vol.20 (3), p.e1900300-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-3e639ac3af7880744d119eb22fc2c3a09e2819b3d893bd52f0573e3f43414c843</citedby><cites>FETCH-LOGICAL-c4100-3e639ac3af7880744d119eb22fc2c3a09e2819b3d893bd52f0573e3f43414c843</cites><orcidid>0000-0003-3678-2078 ; 0000-0001-8670-7936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.201900300$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.201900300$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31886614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Heejung</creatorcontrib><creatorcontrib>Yoon, Minhyuk</creatorcontrib><creatorcontrib>Gajendiran, Mani</creatorcontrib><creatorcontrib>Kim, Kyobum</creatorcontrib><title>Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration. Gradient formation in hydrogels is a promising strategy for accessing complete imitation of the natural microcellular or tissue environments. Herein, this review summarizes representative strategies for fabrication of gradient hydrogels and their applications in the field of tissue engineering.</description><subject>Animals</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - therapeutic use</subject><subject>Bioprinting</subject><subject>Chemical properties</subject><subject>Diffusion pumps</subject><subject>Fabrication</subject><subject>gradient hydrogels</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - therapeutic use</subject><subject>Microenvironments</subject><subject>microfluidic device</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Mimicry</subject><subject>Models, Biological</subject><subject>Photolithography</subject><subject>Regeneration</subject><subject>Regeneration - drug effects</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>syringe pump system</subject><subject>Tissue Engineering</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1LwzAYBvAgipvTq0cJePHSma-2yXGOfcFE0HnxUtL2bcno2pq0yP57WzYnePGUEH7vQ94HoVtKxpQQ9rjTsRkzQhUhnJAzNKQBDTyfKv_8dJfhAF05tyWEhlKxSzTgVMogoGKIPl4hgbLBb43VDeQGHDYlnuvYmkQ3pipxleGF1anp1XKf2iqHwuGssnhjnGsBz8rclADWlDme1HVxHHTX6CLThYOb4zlC7_PZZrr01i-L1XSy9hLRreBxCLjSCddZKCUJhUgpVRAzliWseyUKmKQq5qlUPE59lhE_5MAzwQUViRR8hB4OubWtPltwTbQzLoGi0CVUrYsY51SwkKie3v-h26q1Zfe7ToU0YEIy0qnxQSW2cs5CFtXW7LTdR5REfetR33p0ar0buDvGtvEO0hP_qbkD6gC-TAH7f-Ki58nT6jf8G3zyjRU</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Jo, Heejung</creator><creator>Yoon, Minhyuk</creator><creator>Gajendiran, Mani</creator><creator>Kim, Kyobum</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3678-2078</orcidid><orcidid>https://orcid.org/0000-0001-8670-7936</orcidid></search><sort><creationdate>202003</creationdate><title>Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications</title><author>Jo, Heejung ; Yoon, Minhyuk ; Gajendiran, Mani ; Kim, Kyobum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-3e639ac3af7880744d119eb22fc2c3a09e2819b3d893bd52f0573e3f43414c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - therapeutic use</topic><topic>Bioprinting</topic><topic>Chemical properties</topic><topic>Diffusion pumps</topic><topic>Fabrication</topic><topic>gradient hydrogels</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - therapeutic use</topic><topic>Microenvironments</topic><topic>microfluidic device</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Mimicry</topic><topic>Models, Biological</topic><topic>Photolithography</topic><topic>Regeneration</topic><topic>Regeneration - drug effects</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>syringe pump system</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Heejung</creatorcontrib><creatorcontrib>Yoon, Minhyuk</creatorcontrib><creatorcontrib>Gajendiran, Mani</creatorcontrib><creatorcontrib>Kim, Kyobum</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Heejung</au><au>Yoon, Minhyuk</au><au>Gajendiran, Mani</au><au>Kim, Kyobum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2020-03</date><risdate>2020</risdate><volume>20</volume><issue>3</issue><spage>e1900300</spage><epage>n/a</epage><pages>e1900300-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Hydrogels are widely used as scaffold in tissue engineering field because of their ability to mimic the cellular microenvironment. However, mimicking a completely natural cellular environment is complicated due to the differences in various physical and chemical properties of cellular environments. Recently, gradient hydrogels provide excellent heterogeneous environment to mimic the different cellular microenvironments. To create hydrogels with an anisotropic distribution, gradient hydrogels have been widely developed by adopting several gradient generation techniques. Herein, the various gradient hydrogel fabrication techniques, including dual syringe pump systems, microfluidic device, photolithography, diffusion, and bio‐printing are summarized. As the effects of gradient 3D hydrogels with stems have been reviewed elsewhere, this review focuses principally on gradient hydrogel fabrication for multi‐model tissue regeneration. This review provides new insights into the key points for fabrication of gradient hydrogels for multi‐model tissue regeneration. Gradient formation in hydrogels is a promising strategy for accessing complete imitation of the natural microcellular or tissue environments. Herein, this review summarizes representative strategies for fabrication of gradient hydrogels and their applications in the field of tissue engineering.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31886614</pmid><doi>10.1002/mabi.201900300</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3678-2078</orcidid><orcidid>https://orcid.org/0000-0001-8670-7936</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2020-03, Vol.20 (3), p.e1900300-n/a
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_2331427094
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biomimetic Materials - chemistry
Biomimetic Materials - therapeutic use
Bioprinting
Chemical properties
Diffusion pumps
Fabrication
gradient hydrogels
Humans
Hydrogels
Hydrogels - chemistry
Hydrogels - therapeutic use
Microenvironments
microfluidic device
Microfluidic devices
Microfluidics
Mimicry
Models, Biological
Photolithography
Regeneration
Regeneration - drug effects
Stem Cells - cytology
Stem Cells - metabolism
syringe pump system
Tissue Engineering
title Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Strategies%20in%20Fabrication%20of%20Gradient%20Hydrogels%20for%20Tissue%20Engineering%20Applications&rft.jtitle=Macromolecular%20bioscience&rft.au=Jo,%20Heejung&rft.date=2020-03&rft.volume=20&rft.issue=3&rft.spage=e1900300&rft.epage=n/a&rft.pages=e1900300-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201900300&rft_dat=%3Cproquest_cross%3E2371624820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371624820&rft_id=info:pmid/31886614&rfr_iscdi=true