Performance Recovery in Degraded Carbon-Based Electrodes for Capacitive Deionization
Limitations of capacitive deionization (CDI) and future commercialization efforts are intrinsically bound to electrode stability. In this work, thermal treatments are explored to understand their ability to regenerate aged CDI electrodes. We demonstrate that a relatively low thermal treatment temper...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-02, Vol.54 (3), p.1848-1856 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1856 |
---|---|
container_issue | 3 |
container_start_page | 1848 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Li, Bei Zheng, Tianye Ran, Sijia Sun, Mingzhe Shang, Jin Hu, Haibo Lee, Po-Heng Boles, Steven T |
description | Limitations of capacitive deionization (CDI) and future commercialization efforts are intrinsically bound to electrode stability. In this work, thermal treatments are explored to understand their ability to regenerate aged CDI electrodes. We demonstrate that a relatively low thermal treatment temperature of ∼500 °C can sufficiently recover the lost salt adsorption capacity of degraded electrodes. Furthermore, a systematic study of electrode replacement clarifies that the desalination ability loss and regeneration for a CDI cell are isolated to the aged anode, as expected. Characterizations of surface functionalities support that the acidic oxygen-containing functional groups formed in situ during cycling undergo thermal decomposition during treatment. The modified Donnan model quantitatively confirms that the surface charges originate from the formation/decomposition of functional groups. Accordingly, the lost pore volume and the increased resistance are recovered during thermal treatments, while the surface morphologies and pore structure of the electrodes are well-preserved. Therefore, thermal treatment can be applied practically to extend the lifetime of aged electrodes. This study also offers insights into strategies for minimizing electrode degradation or in situ regeneration such that the technology gains momentum for future commercialization. |
doi_str_mv | 10.1021/acs.est.9b04749 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331426179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352595418</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-63ccd0675a1869938c0e5810a7ab379b7ba7dcefe018cc4c92aeb9fff5d829013</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMobk7P3qTgRZBuSdO0yVHn_AEDRSZ4K1_Tr1Jpm5m0g_nXm7G5g-DpI-R533x5CDlndMxoxCag3RhdN1Y5jdNYHZAhExENhRTskAwpZTxUPHkfkBPnPimlEafymAw4kzJJhBqSxQva0tgGWo3BK2qzQrsOqja4ww8LBRbBFGxu2vAWnD_MatSdNQW6wKf83RJ01VUr9Hxl2uobOj9OyVEJtcOz3RyRt_vZYvoYzp8fnqY38xC4kl2YcK0LmqQCmEyU4lJTFJJRSCHnqcrTHNJCY4mUSa1jrSLAXJVlKQoZKf-3Ebna9i6t-eq9h6ypnMa6hhZN77KIcxZHCUuVRy__oJ-mt63fzlMiEkrETHpqsqW0Nc5ZLLOlrRqw64zRbCM888KzTXon3Ccudr193mCx538Ne-B6C2yS-zf_q_sBvkSLuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352595418</pqid></control><display><type>article</type><title>Performance Recovery in Degraded Carbon-Based Electrodes for Capacitive Deionization</title><source>ACS Publications</source><source>MEDLINE</source><creator>Li, Bei ; Zheng, Tianye ; Ran, Sijia ; Sun, Mingzhe ; Shang, Jin ; Hu, Haibo ; Lee, Po-Heng ; Boles, Steven T</creator><creatorcontrib>Li, Bei ; Zheng, Tianye ; Ran, Sijia ; Sun, Mingzhe ; Shang, Jin ; Hu, Haibo ; Lee, Po-Heng ; Boles, Steven T</creatorcontrib><description>Limitations of capacitive deionization (CDI) and future commercialization efforts are intrinsically bound to electrode stability. In this work, thermal treatments are explored to understand their ability to regenerate aged CDI electrodes. We demonstrate that a relatively low thermal treatment temperature of ∼500 °C can sufficiently recover the lost salt adsorption capacity of degraded electrodes. Furthermore, a systematic study of electrode replacement clarifies that the desalination ability loss and regeneration for a CDI cell are isolated to the aged anode, as expected. Characterizations of surface functionalities support that the acidic oxygen-containing functional groups formed in situ during cycling undergo thermal decomposition during treatment. The modified Donnan model quantitatively confirms that the surface charges originate from the formation/decomposition of functional groups. Accordingly, the lost pore volume and the increased resistance are recovered during thermal treatments, while the surface morphologies and pore structure of the electrodes are well-preserved. Therefore, thermal treatment can be applied practically to extend the lifetime of aged electrodes. This study also offers insights into strategies for minimizing electrode degradation or in situ regeneration such that the technology gains momentum for future commercialization.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b04749</identifier><identifier>PMID: 31886659</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Carbon ; Commercialization ; Decomposition ; Deionization ; Desalination ; Electrodes ; Functional groups ; Heat treatment ; Morphology ; Performance degradation ; Porosity ; Regeneration ; Sodium Chloride ; Thermal decomposition ; Thermal resistance ; Water Purification</subject><ispartof>Environmental science & technology, 2020-02, Vol.54 (3), p.1848-1856</ispartof><rights>Copyright American Chemical Society Feb 4, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-63ccd0675a1869938c0e5810a7ab379b7ba7dcefe018cc4c92aeb9fff5d829013</citedby><cites>FETCH-LOGICAL-a398t-63ccd0675a1869938c0e5810a7ab379b7ba7dcefe018cc4c92aeb9fff5d829013</cites><orcidid>0000-0001-5165-0466 ; 0000-0002-6472-7773 ; 0000-0003-1422-5529 ; 0000-0001-7494-1469 ; 0000-0002-2281-9506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b04749$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b04749$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31886659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Zheng, Tianye</creatorcontrib><creatorcontrib>Ran, Sijia</creatorcontrib><creatorcontrib>Sun, Mingzhe</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Hu, Haibo</creatorcontrib><creatorcontrib>Lee, Po-Heng</creatorcontrib><creatorcontrib>Boles, Steven T</creatorcontrib><title>Performance Recovery in Degraded Carbon-Based Electrodes for Capacitive Deionization</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Limitations of capacitive deionization (CDI) and future commercialization efforts are intrinsically bound to electrode stability. In this work, thermal treatments are explored to understand their ability to regenerate aged CDI electrodes. We demonstrate that a relatively low thermal treatment temperature of ∼500 °C can sufficiently recover the lost salt adsorption capacity of degraded electrodes. Furthermore, a systematic study of electrode replacement clarifies that the desalination ability loss and regeneration for a CDI cell are isolated to the aged anode, as expected. Characterizations of surface functionalities support that the acidic oxygen-containing functional groups formed in situ during cycling undergo thermal decomposition during treatment. The modified Donnan model quantitatively confirms that the surface charges originate from the formation/decomposition of functional groups. Accordingly, the lost pore volume and the increased resistance are recovered during thermal treatments, while the surface morphologies and pore structure of the electrodes are well-preserved. Therefore, thermal treatment can be applied practically to extend the lifetime of aged electrodes. This study also offers insights into strategies for minimizing electrode degradation or in situ regeneration such that the technology gains momentum for future commercialization.</description><subject>Adsorption</subject><subject>Carbon</subject><subject>Commercialization</subject><subject>Decomposition</subject><subject>Deionization</subject><subject>Desalination</subject><subject>Electrodes</subject><subject>Functional groups</subject><subject>Heat treatment</subject><subject>Morphology</subject><subject>Performance degradation</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Sodium Chloride</subject><subject>Thermal decomposition</subject><subject>Thermal resistance</subject><subject>Water Purification</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAYhoMobk7P3qTgRZBuSdO0yVHn_AEDRSZ4K1_Tr1Jpm5m0g_nXm7G5g-DpI-R533x5CDlndMxoxCag3RhdN1Y5jdNYHZAhExENhRTskAwpZTxUPHkfkBPnPimlEafymAw4kzJJhBqSxQva0tgGWo3BK2qzQrsOqja4ww8LBRbBFGxu2vAWnD_MatSdNQW6wKf83RJ01VUr9Hxl2uobOj9OyVEJtcOz3RyRt_vZYvoYzp8fnqY38xC4kl2YcK0LmqQCmEyU4lJTFJJRSCHnqcrTHNJCY4mUSa1jrSLAXJVlKQoZKf-3Ebna9i6t-eq9h6ypnMa6hhZN77KIcxZHCUuVRy__oJ-mt63fzlMiEkrETHpqsqW0Nc5ZLLOlrRqw64zRbCM888KzTXon3Ccudr193mCx538Ne-B6C2yS-zf_q_sBvkSLuw</recordid><startdate>20200204</startdate><enddate>20200204</enddate><creator>Li, Bei</creator><creator>Zheng, Tianye</creator><creator>Ran, Sijia</creator><creator>Sun, Mingzhe</creator><creator>Shang, Jin</creator><creator>Hu, Haibo</creator><creator>Lee, Po-Heng</creator><creator>Boles, Steven T</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5165-0466</orcidid><orcidid>https://orcid.org/0000-0002-6472-7773</orcidid><orcidid>https://orcid.org/0000-0003-1422-5529</orcidid><orcidid>https://orcid.org/0000-0001-7494-1469</orcidid><orcidid>https://orcid.org/0000-0002-2281-9506</orcidid></search><sort><creationdate>20200204</creationdate><title>Performance Recovery in Degraded Carbon-Based Electrodes for Capacitive Deionization</title><author>Li, Bei ; Zheng, Tianye ; Ran, Sijia ; Sun, Mingzhe ; Shang, Jin ; Hu, Haibo ; Lee, Po-Heng ; Boles, Steven T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-63ccd0675a1869938c0e5810a7ab379b7ba7dcefe018cc4c92aeb9fff5d829013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Carbon</topic><topic>Commercialization</topic><topic>Decomposition</topic><topic>Deionization</topic><topic>Desalination</topic><topic>Electrodes</topic><topic>Functional groups</topic><topic>Heat treatment</topic><topic>Morphology</topic><topic>Performance degradation</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Sodium Chloride</topic><topic>Thermal decomposition</topic><topic>Thermal resistance</topic><topic>Water Purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Bei</creatorcontrib><creatorcontrib>Zheng, Tianye</creatorcontrib><creatorcontrib>Ran, Sijia</creatorcontrib><creatorcontrib>Sun, Mingzhe</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Hu, Haibo</creatorcontrib><creatorcontrib>Lee, Po-Heng</creatorcontrib><creatorcontrib>Boles, Steven T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Bei</au><au>Zheng, Tianye</au><au>Ran, Sijia</au><au>Sun, Mingzhe</au><au>Shang, Jin</au><au>Hu, Haibo</au><au>Lee, Po-Heng</au><au>Boles, Steven T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Recovery in Degraded Carbon-Based Electrodes for Capacitive Deionization</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-02-04</date><risdate>2020</risdate><volume>54</volume><issue>3</issue><spage>1848</spage><epage>1856</epage><pages>1848-1856</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Limitations of capacitive deionization (CDI) and future commercialization efforts are intrinsically bound to electrode stability. In this work, thermal treatments are explored to understand their ability to regenerate aged CDI electrodes. We demonstrate that a relatively low thermal treatment temperature of ∼500 °C can sufficiently recover the lost salt adsorption capacity of degraded electrodes. Furthermore, a systematic study of electrode replacement clarifies that the desalination ability loss and regeneration for a CDI cell are isolated to the aged anode, as expected. Characterizations of surface functionalities support that the acidic oxygen-containing functional groups formed in situ during cycling undergo thermal decomposition during treatment. The modified Donnan model quantitatively confirms that the surface charges originate from the formation/decomposition of functional groups. Accordingly, the lost pore volume and the increased resistance are recovered during thermal treatments, while the surface morphologies and pore structure of the electrodes are well-preserved. Therefore, thermal treatment can be applied practically to extend the lifetime of aged electrodes. This study also offers insights into strategies for minimizing electrode degradation or in situ regeneration such that the technology gains momentum for future commercialization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31886659</pmid><doi>10.1021/acs.est.9b04749</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5165-0466</orcidid><orcidid>https://orcid.org/0000-0002-6472-7773</orcidid><orcidid>https://orcid.org/0000-0003-1422-5529</orcidid><orcidid>https://orcid.org/0000-0001-7494-1469</orcidid><orcidid>https://orcid.org/0000-0002-2281-9506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-02, Vol.54 (3), p.1848-1856 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2331426179 |
source | ACS Publications; MEDLINE |
subjects | Adsorption Carbon Commercialization Decomposition Deionization Desalination Electrodes Functional groups Heat treatment Morphology Performance degradation Porosity Regeneration Sodium Chloride Thermal decomposition Thermal resistance Water Purification |
title | Performance Recovery in Degraded Carbon-Based Electrodes for Capacitive Deionization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Recovery%20in%20Degraded%20Carbon-Based%20Electrodes%20for%20Capacitive%20Deionization&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Bei&rft.date=2020-02-04&rft.volume=54&rft.issue=3&rft.spage=1848&rft.epage=1856&rft.pages=1848-1856&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b04749&rft_dat=%3Cproquest_cross%3E2352595418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352595418&rft_id=info:pmid/31886659&rfr_iscdi=true |