Tomato green waste biochars as sustainable trivalent chromium sorbents
Chromium removal from aqueous solutions has gained attention due to its hazardous impact on life organisms. In the present study, sorption processes were performed to examine the opportunity to apply biochar derived from waste tomato leaves and stems for Cr(III) ion removal. Biochars were produced t...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2021-05, Vol.28 (19), p.24245-24255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24255 |
---|---|
container_issue | 19 |
container_start_page | 24245 |
container_title | Environmental science and pollution research international |
container_volume | 28 |
creator | Mokrzycki, Jakub Michalak, Izabela Rutkowski, Piotr |
description | Chromium removal from aqueous solutions has gained attention due to its hazardous impact on life organisms. In the present study, sorption processes were performed to examine the opportunity to apply biochar derived from waste tomato leaves and stems for Cr(III) ion removal. Biochars were produced through pyrolysis in a wide range of temperature (250–800 °C). The obtained biochars were investigated in detail by means of ultimate and proximate analyses, pH point of zero charge, FT–IR, scanning electron microscopy, and mercury porosimetry. Biochars are characterized by high amount of ash varying from 23 to 44% and as a result high pHpzc values of about 13. It was proven that increasing pyrolysis temperature positively affected sorption of Cr(III) ions. Mineral matter in the biochars plays a crucial role in the removal of Cr(III) ions from aqueous solution mainly due to their precipitation. The sorption capacity of biochar produced at 800 °C was 169.5 mg g
−1
, whereas at 250 °C only 62.2 mg g
−1
. It was found that biochar can be reused in sorption process after desorption using 0.1 M HCl, while the sorption capacity decreased 4-fold. |
doi_str_mv | 10.1007/s11356-019-07373-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331258454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2531425131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fa281219323de7b7c147d22d58e69797e17a86963a6d558a36a4a10deaa80513</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMo7rr6BzxIwYuXaiZJm-Qo4qqw4GXvYdpmdytto5lW8d_bdf0AD54CyZuX4TF2CvwSONdXBCCzPOVgU66llqncY1PIQaVaWbvPptwqlYJUasKOiJ44F9wKfcgmEoy2Rpspmy9Di31I1tH7LnlD6n1S1KHcYKQEKaGBeqw7LBqf9LF-xcZ3fVJuYmjroU0oxGK8oGN2sMKG_MnXOWPL-e3y5j5dPN493Fwv0lKB6NMVCgMCrBSy8rrQJShdCVFlxudWW-1Bo8ltLjGvssygzFEh8MojGp6BnLGLnfY5hpfBU-_amkrfNNj5MJATUoLIjMrUiJ7_QZ_CELtxOScyCUqMuq1Q7KgyBqLoV-451i3GdwfcbSO7XWQ3RnafkZ0ch86-1EPR-upn5LvqCMgdQONTt_bx9-9_tB-cNoZj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531425131</pqid></control><display><type>article</type><title>Tomato green waste biochars as sustainable trivalent chromium sorbents</title><source>Springer Nature - Complete Springer Journals</source><creator>Mokrzycki, Jakub ; Michalak, Izabela ; Rutkowski, Piotr</creator><creatorcontrib>Mokrzycki, Jakub ; Michalak, Izabela ; Rutkowski, Piotr</creatorcontrib><description>Chromium removal from aqueous solutions has gained attention due to its hazardous impact on life organisms. In the present study, sorption processes were performed to examine the opportunity to apply biochar derived from waste tomato leaves and stems for Cr(III) ion removal. Biochars were produced through pyrolysis in a wide range of temperature (250–800 °C). The obtained biochars were investigated in detail by means of ultimate and proximate analyses, pH point of zero charge, FT–IR, scanning electron microscopy, and mercury porosimetry. Biochars are characterized by high amount of ash varying from 23 to 44% and as a result high pHpzc values of about 13. It was proven that increasing pyrolysis temperature positively affected sorption of Cr(III) ions. Mineral matter in the biochars plays a crucial role in the removal of Cr(III) ions from aqueous solution mainly due to their precipitation. The sorption capacity of biochar produced at 800 °C was 169.5 mg g
−1
, whereas at 250 °C only 62.2 mg g
−1
. It was found that biochar can be reused in sorption process after desorption using 0.1 M HCl, while the sorption capacity decreased 4-fold.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-019-07373-3</identifier><identifier>PMID: 31879878</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Aquatic Pollution ; Aqueous solutions ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biomass ; Cellulose ; Charcoal ; Chemical precipitation ; Chromium ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Ions ; Lignin ; Membrane separation ; Mercury ; Particle size ; Porous materials ; Pyrolysis ; Raw materials ; Scanning electron microscopy ; Sorbents ; Sorption ; Tomatoes ; Trivalent chromium ; Waste and Biomass Management & Valorization ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2021-05, Vol.28 (19), p.24245-24255</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fa281219323de7b7c147d22d58e69797e17a86963a6d558a36a4a10deaa80513</citedby><cites>FETCH-LOGICAL-c412t-fa281219323de7b7c147d22d58e69797e17a86963a6d558a36a4a10deaa80513</cites><orcidid>0000-0002-9214-7901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-019-07373-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-019-07373-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31879878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mokrzycki, Jakub</creatorcontrib><creatorcontrib>Michalak, Izabela</creatorcontrib><creatorcontrib>Rutkowski, Piotr</creatorcontrib><title>Tomato green waste biochars as sustainable trivalent chromium sorbents</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Chromium removal from aqueous solutions has gained attention due to its hazardous impact on life organisms. In the present study, sorption processes were performed to examine the opportunity to apply biochar derived from waste tomato leaves and stems for Cr(III) ion removal. Biochars were produced through pyrolysis in a wide range of temperature (250–800 °C). The obtained biochars were investigated in detail by means of ultimate and proximate analyses, pH point of zero charge, FT–IR, scanning electron microscopy, and mercury porosimetry. Biochars are characterized by high amount of ash varying from 23 to 44% and as a result high pHpzc values of about 13. It was proven that increasing pyrolysis temperature positively affected sorption of Cr(III) ions. Mineral matter in the biochars plays a crucial role in the removal of Cr(III) ions from aqueous solution mainly due to their precipitation. The sorption capacity of biochar produced at 800 °C was 169.5 mg g
−1
, whereas at 250 °C only 62.2 mg g
−1
. It was found that biochar can be reused in sorption process after desorption using 0.1 M HCl, while the sorption capacity decreased 4-fold.</description><subject>Adsorption</subject><subject>Aquatic Pollution</subject><subject>Aqueous solutions</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biomass</subject><subject>Cellulose</subject><subject>Charcoal</subject><subject>Chemical precipitation</subject><subject>Chromium</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Ions</subject><subject>Lignin</subject><subject>Membrane separation</subject><subject>Mercury</subject><subject>Particle size</subject><subject>Porous materials</subject><subject>Pyrolysis</subject><subject>Raw materials</subject><subject>Scanning electron microscopy</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Tomatoes</subject><subject>Trivalent chromium</subject><subject>Waste and Biomass Management & Valorization</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQQIMo7rr6BzxIwYuXaiZJm-Qo4qqw4GXvYdpmdytto5lW8d_bdf0AD54CyZuX4TF2CvwSONdXBCCzPOVgU66llqncY1PIQaVaWbvPptwqlYJUasKOiJ44F9wKfcgmEoy2Rpspmy9Di31I1tH7LnlD6n1S1KHcYKQEKaGBeqw7LBqf9LF-xcZ3fVJuYmjroU0oxGK8oGN2sMKG_MnXOWPL-e3y5j5dPN493Fwv0lKB6NMVCgMCrBSy8rrQJShdCVFlxudWW-1Bo8ltLjGvssygzFEh8MojGp6BnLGLnfY5hpfBU-_amkrfNNj5MJATUoLIjMrUiJ7_QZ_CELtxOScyCUqMuq1Q7KgyBqLoV-451i3GdwfcbSO7XWQ3RnafkZ0ch86-1EPR-upn5LvqCMgdQONTt_bx9-9_tB-cNoZj</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Mokrzycki, Jakub</creator><creator>Michalak, Izabela</creator><creator>Rutkowski, Piotr</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9214-7901</orcidid></search><sort><creationdate>20210501</creationdate><title>Tomato green waste biochars as sustainable trivalent chromium sorbents</title><author>Mokrzycki, Jakub ; Michalak, Izabela ; Rutkowski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fa281219323de7b7c147d22d58e69797e17a86963a6d558a36a4a10deaa80513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Aquatic Pollution</topic><topic>Aqueous solutions</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biomass</topic><topic>Cellulose</topic><topic>Charcoal</topic><topic>Chemical precipitation</topic><topic>Chromium</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Ions</topic><topic>Lignin</topic><topic>Membrane separation</topic><topic>Mercury</topic><topic>Particle size</topic><topic>Porous materials</topic><topic>Pyrolysis</topic><topic>Raw materials</topic><topic>Scanning electron microscopy</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Tomatoes</topic><topic>Trivalent chromium</topic><topic>Waste and Biomass Management & Valorization</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mokrzycki, Jakub</creatorcontrib><creatorcontrib>Michalak, Izabela</creatorcontrib><creatorcontrib>Rutkowski, Piotr</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mokrzycki, Jakub</au><au>Michalak, Izabela</au><au>Rutkowski, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tomato green waste biochars as sustainable trivalent chromium sorbents</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>28</volume><issue>19</issue><spage>24245</spage><epage>24255</epage><pages>24245-24255</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Chromium removal from aqueous solutions has gained attention due to its hazardous impact on life organisms. In the present study, sorption processes were performed to examine the opportunity to apply biochar derived from waste tomato leaves and stems for Cr(III) ion removal. Biochars were produced through pyrolysis in a wide range of temperature (250–800 °C). The obtained biochars were investigated in detail by means of ultimate and proximate analyses, pH point of zero charge, FT–IR, scanning electron microscopy, and mercury porosimetry. Biochars are characterized by high amount of ash varying from 23 to 44% and as a result high pHpzc values of about 13. It was proven that increasing pyrolysis temperature positively affected sorption of Cr(III) ions. Mineral matter in the biochars plays a crucial role in the removal of Cr(III) ions from aqueous solution mainly due to their precipitation. The sorption capacity of biochar produced at 800 °C was 169.5 mg g
−1
, whereas at 250 °C only 62.2 mg g
−1
. It was found that biochar can be reused in sorption process after desorption using 0.1 M HCl, while the sorption capacity decreased 4-fold.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31879878</pmid><doi>10.1007/s11356-019-07373-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9214-7901</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2021-05, Vol.28 (19), p.24245-24255 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2331258454 |
source | Springer Nature - Complete Springer Journals |
subjects | Adsorption Aquatic Pollution Aqueous solutions Atmospheric Protection/Air Quality Control/Air Pollution Biomass Cellulose Charcoal Chemical precipitation Chromium Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Ions Lignin Membrane separation Mercury Particle size Porous materials Pyrolysis Raw materials Scanning electron microscopy Sorbents Sorption Tomatoes Trivalent chromium Waste and Biomass Management & Valorization Waste Water Technology Water Management Water Pollution Control |
title | Tomato green waste biochars as sustainable trivalent chromium sorbents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tomato%20green%20waste%20biochars%20as%20sustainable%20trivalent%20chromium%20sorbents&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Mokrzycki,%20Jakub&rft.date=2021-05-01&rft.volume=28&rft.issue=19&rft.spage=24245&rft.epage=24255&rft.pages=24245-24255&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-019-07373-3&rft_dat=%3Cproquest_cross%3E2531425131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531425131&rft_id=info:pmid/31879878&rfr_iscdi=true |