Machine-learning models for analyzing TSOM images of nanostructures
Through-focus scanning optical microscopy (TSOM) is an economical and nondestructive method for measuring three-dimensional nanostructures. After obtaining a TSOM image, a library-matching method is typically used to interpret optical intensity information and determine the dimensions of a measureme...
Gespeichert in:
Veröffentlicht in: | Optics express 2019-11, Vol.27 (23), p.33978-33998 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33998 |
---|---|
container_issue | 23 |
container_start_page | 33978 |
container_title | Optics express |
container_volume | 27 |
creator | Qu, Yufu Hao, Jialin Peng, Renju |
description | Through-focus scanning optical microscopy (TSOM) is an economical and nondestructive method for measuring three-dimensional nanostructures. After obtaining a TSOM image, a library-matching method is typically used to interpret optical intensity information and determine the dimensions of a measurement target. To further improve dimensional measurement accuracy, this paper proposes a machine learning method that extracts texture information from TSOM images. The method extracts feature vectors of TSOM images in terms of the Gray-level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradient (HOG). We tested models trained with these vectors in isolation, in pairs, and a combination of all three to test seven possible feature vectors. Once normalized, these feature vectors were then used to train and test three machine-learning regression models: random forest, GBDT, and AdaBoost. Compared with the results of the library-matching method, the measurement accuracy of the machine learning method is considerably higher. When detecting dimensional features that fall into a wide range of sizes, the AdaBoost model used with the combined LBP and HOG feature vectors performs better than the others. For detecting dimensional features within a narrower range of sizes, the AdaBoost model combined with HOG feature extraction algorithm performs better. |
doi_str_mv | 10.1364/OE.27.033978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331253135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2331253135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-f69e193a85611ae9e0acc6d1e420dedfd01db6cc4f7593e9360d719dd0474eaa3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EolDYmFFGBlLs2LHjEVXlQ2qVgTJbrv1cghK72MlQfj2tWhDTu3o6uro6CN0QPCGUs4d6NinEBFMqRXWCLgiWLGe4Eqf_8ghdpvSJMWFCinM0oqQSFSv5BZoutPloPOQt6Ogbv866YKFNmQsx01632-_9c_lWL7Km02tIWXCZ1z6kPg6mHyKkK3TmdJvg-njH6P1ptpy-5PP6-XX6OM8NLWSfOy6BSKqrkhOiQQLWxnBLgBXYgnUWE7vixjAnSklBUo6tINJazAQDrekY3R16NzF8DZB61TXJQNtqD2FIqqCUFCUltNyh9wfUxJBSBKc2cTc_bhXBaq9N1TNVCHXQtsNvj83DqgP7B_96oj_Ym2gS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331253135</pqid></control><display><type>article</type><title>Machine-learning models for analyzing TSOM images of nanostructures</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Qu, Yufu ; Hao, Jialin ; Peng, Renju</creator><creatorcontrib>Qu, Yufu ; Hao, Jialin ; Peng, Renju</creatorcontrib><description>Through-focus scanning optical microscopy (TSOM) is an economical and nondestructive method for measuring three-dimensional nanostructures. After obtaining a TSOM image, a library-matching method is typically used to interpret optical intensity information and determine the dimensions of a measurement target. To further improve dimensional measurement accuracy, this paper proposes a machine learning method that extracts texture information from TSOM images. The method extracts feature vectors of TSOM images in terms of the Gray-level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradient (HOG). We tested models trained with these vectors in isolation, in pairs, and a combination of all three to test seven possible feature vectors. Once normalized, these feature vectors were then used to train and test three machine-learning regression models: random forest, GBDT, and AdaBoost. Compared with the results of the library-matching method, the measurement accuracy of the machine learning method is considerably higher. When detecting dimensional features that fall into a wide range of sizes, the AdaBoost model used with the combined LBP and HOG feature vectors performs better than the others. For detecting dimensional features within a narrower range of sizes, the AdaBoost model combined with HOG feature extraction algorithm performs better.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.27.033978</identifier><identifier>PMID: 31878456</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2019-11, Vol.27 (23), p.33978-33998</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-f69e193a85611ae9e0acc6d1e420dedfd01db6cc4f7593e9360d719dd0474eaa3</citedby><cites>FETCH-LOGICAL-c329t-f69e193a85611ae9e0acc6d1e420dedfd01db6cc4f7593e9360d719dd0474eaa3</cites><orcidid>0000-0001-9348-9797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31878456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qu, Yufu</creatorcontrib><creatorcontrib>Hao, Jialin</creatorcontrib><creatorcontrib>Peng, Renju</creatorcontrib><title>Machine-learning models for analyzing TSOM images of nanostructures</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Through-focus scanning optical microscopy (TSOM) is an economical and nondestructive method for measuring three-dimensional nanostructures. After obtaining a TSOM image, a library-matching method is typically used to interpret optical intensity information and determine the dimensions of a measurement target. To further improve dimensional measurement accuracy, this paper proposes a machine learning method that extracts texture information from TSOM images. The method extracts feature vectors of TSOM images in terms of the Gray-level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradient (HOG). We tested models trained with these vectors in isolation, in pairs, and a combination of all three to test seven possible feature vectors. Once normalized, these feature vectors were then used to train and test three machine-learning regression models: random forest, GBDT, and AdaBoost. Compared with the results of the library-matching method, the measurement accuracy of the machine learning method is considerably higher. When detecting dimensional features that fall into a wide range of sizes, the AdaBoost model used with the combined LBP and HOG feature vectors performs better than the others. For detecting dimensional features within a narrower range of sizes, the AdaBoost model combined with HOG feature extraction algorithm performs better.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EolDYmFFGBlLs2LHjEVXlQ2qVgTJbrv1cghK72MlQfj2tWhDTu3o6uro6CN0QPCGUs4d6NinEBFMqRXWCLgiWLGe4Eqf_8ghdpvSJMWFCinM0oqQSFSv5BZoutPloPOQt6Ogbv866YKFNmQsx01632-_9c_lWL7Km02tIWXCZ1z6kPg6mHyKkK3TmdJvg-njH6P1ptpy-5PP6-XX6OM8NLWSfOy6BSKqrkhOiQQLWxnBLgBXYgnUWE7vixjAnSklBUo6tINJazAQDrekY3R16NzF8DZB61TXJQNtqD2FIqqCUFCUltNyh9wfUxJBSBKc2cTc_bhXBaq9N1TNVCHXQtsNvj83DqgP7B_96oj_Ym2gS</recordid><startdate>20191111</startdate><enddate>20191111</enddate><creator>Qu, Yufu</creator><creator>Hao, Jialin</creator><creator>Peng, Renju</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9348-9797</orcidid></search><sort><creationdate>20191111</creationdate><title>Machine-learning models for analyzing TSOM images of nanostructures</title><author>Qu, Yufu ; Hao, Jialin ; Peng, Renju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-f69e193a85611ae9e0acc6d1e420dedfd01db6cc4f7593e9360d719dd0474eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Yufu</creatorcontrib><creatorcontrib>Hao, Jialin</creatorcontrib><creatorcontrib>Peng, Renju</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Yufu</au><au>Hao, Jialin</au><au>Peng, Renju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-learning models for analyzing TSOM images of nanostructures</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2019-11-11</date><risdate>2019</risdate><volume>27</volume><issue>23</issue><spage>33978</spage><epage>33998</epage><pages>33978-33998</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Through-focus scanning optical microscopy (TSOM) is an economical and nondestructive method for measuring three-dimensional nanostructures. After obtaining a TSOM image, a library-matching method is typically used to interpret optical intensity information and determine the dimensions of a measurement target. To further improve dimensional measurement accuracy, this paper proposes a machine learning method that extracts texture information from TSOM images. The method extracts feature vectors of TSOM images in terms of the Gray-level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradient (HOG). We tested models trained with these vectors in isolation, in pairs, and a combination of all three to test seven possible feature vectors. Once normalized, these feature vectors were then used to train and test three machine-learning regression models: random forest, GBDT, and AdaBoost. Compared with the results of the library-matching method, the measurement accuracy of the machine learning method is considerably higher. When detecting dimensional features that fall into a wide range of sizes, the AdaBoost model used with the combined LBP and HOG feature vectors performs better than the others. For detecting dimensional features within a narrower range of sizes, the AdaBoost model combined with HOG feature extraction algorithm performs better.</abstract><cop>United States</cop><pmid>31878456</pmid><doi>10.1364/OE.27.033978</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9348-9797</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2019-11, Vol.27 (23), p.33978-33998 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2331253135 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Machine-learning models for analyzing TSOM images of nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-learning%20models%20for%20analyzing%20TSOM%20images%20of%20nanostructures&rft.jtitle=Optics%20express&rft.au=Qu,%20Yufu&rft.date=2019-11-11&rft.volume=27&rft.issue=23&rft.spage=33978&rft.epage=33998&rft.pages=33978-33998&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.27.033978&rft_dat=%3Cproquest_cross%3E2331253135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2331253135&rft_id=info:pmid/31878456&rfr_iscdi=true |