Exploring the interactions of a Tb(III)–quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies

Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Luminescence (Chichester, England) England), 2020-06, Vol.35 (4), p.512-524
Hauptverfasser: Shaghaghi, Masoomeh, Rashtbari, Samaneh, Vejdani, Samira, Dehghan, Gholamreza, Jouyban, Abolghasem, Yekta, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 4
container_start_page 512
container_title Luminescence (Chichester, England)
container_volume 35
creator Shaghaghi, Masoomeh
Rashtbari, Samaneh
Vejdani, Samira
Dehghan, Gholamreza
Jouyban, Abolghasem
Yekta, Reza
description Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with HSA and BSA using common spectroscopic techniques and a molecular docking study. Fluorescence data revealed that the inherent fluorescence emission of HSA and BSA was markedly quenched by the Tb–QUE complex through a static quenching mechanism, confirming stable complex formation (a ground‐state association) between albumins and Tb–QUE. Binding and thermodynamic parameters were obtained from the fluorescence spectra and the related equations at different temperatures under biological conditions. The binding constants (Kb) were calculated to be 0.8547 × 103 M−1 for HSA and 0.1363 × 103 M−1 for BSA at 298 K. Also, the number of binding sites (n) of the HSA/BSA–Tb–QUE systems was obtained to be approximately 1. Thermodynamic data calculations along with molecular docking results indicated that electrostatic interactions have a main role in the binding process of the Tb–QUE complex with HSA/BSA. Furthermore, molecular docking outputs revealed that the Tb–QUE complex has high affinity to bind to subdomain IIA of HSA and BSA. Binding distances (r) between HSA–Tb–QUE and BSA–Tb–QUE systems were also calculated using the Forster (fluorescence resonance energy transfer) method. It is expected that this study will provide a pathway for designing new compounds with multiple beneficial effects on human health from the phenolic compounds family such as the Tb–QUE complex.
doi_str_mv 10.1002/bio.3757
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331249577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397170214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3497-a05e7d14bd8c09bfdabd59f8698335b73ba8db4aa3874bd126c922f2d130f7d93</originalsourceid><addsrcrecordid>eNp1kctO3DAUhq0KxF3qEyBLbIZFqC9JHHc3IAqRRmLBsI58C2PqxKmdCNixZts37JPUM1AqVerqWEefP_vXD8BnjM4wQuSLtP6MsoJ9Anu4ICRjJKdbH2da7IL9GB8QQmVZ8h2wS3FVUYLKPfB6-TQ4H2x_D8eVgbYfTRBqtL6P0LdQwKWc1XV9-uvl54_JBGVG20Plu8GZJ_hoxxWMJkwdFE5OnU2XZte3cyh6Dc9v56dfYRyMGoOPyg9Wbfadd0ZNTgSovfq-fjiOk7YmHoLtVrhojt7nAbj7drm8uM4WN1f1xXyRKZpzlglUGKZxLnWlEJetFlIXvK1KXlFaSEalqLTMhaAVSxAmpeKEtERjilqmOT0AszfvEHzKFMems1EZ50Rv_BQbQikmOS8YS-jJP-iDn0KffpcozjBDBOd_hSoFjcG0zRBsJ8Jzg1Gz7qdJ_TTrfhJ6_C6cZGf0B_inkARkb8Cjdeb5v6LmvL7ZCH8D9LGamQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397170214</pqid></control><display><type>article</type><title>Exploring the interactions of a Tb(III)–quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies</title><source>Wiley Online Library All Journals</source><creator>Shaghaghi, Masoomeh ; Rashtbari, Samaneh ; Vejdani, Samira ; Dehghan, Gholamreza ; Jouyban, Abolghasem ; Yekta, Reza</creator><creatorcontrib>Shaghaghi, Masoomeh ; Rashtbari, Samaneh ; Vejdani, Samira ; Dehghan, Gholamreza ; Jouyban, Abolghasem ; Yekta, Reza</creatorcontrib><description>Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with HSA and BSA using common spectroscopic techniques and a molecular docking study. Fluorescence data revealed that the inherent fluorescence emission of HSA and BSA was markedly quenched by the Tb–QUE complex through a static quenching mechanism, confirming stable complex formation (a ground‐state association) between albumins and Tb–QUE. Binding and thermodynamic parameters were obtained from the fluorescence spectra and the related equations at different temperatures under biological conditions. The binding constants (Kb) were calculated to be 0.8547 × 103 M−1 for HSA and 0.1363 × 103 M−1 for BSA at 298 K. Also, the number of binding sites (n) of the HSA/BSA–Tb–QUE systems was obtained to be approximately 1. Thermodynamic data calculations along with molecular docking results indicated that electrostatic interactions have a main role in the binding process of the Tb–QUE complex with HSA/BSA. Furthermore, molecular docking outputs revealed that the Tb–QUE complex has high affinity to bind to subdomain IIA of HSA and BSA. Binding distances (r) between HSA–Tb–QUE and BSA–Tb–QUE systems were also calculated using the Forster (fluorescence resonance energy transfer) method. It is expected that this study will provide a pathway for designing new compounds with multiple beneficial effects on human health from the phenolic compounds family such as the Tb–QUE complex.</description><identifier>ISSN: 1522-7235</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.3757</identifier><identifier>PMID: 31883206</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Albumins ; Binding sites ; Bovine serum albumin ; Complex formation ; Constants ; Electrostatic properties ; Emission analysis ; Energy transfer ; Fluorescence ; Fluorescence quenching ; Fluorescence resonance energy transfer ; Human serum albumin ; Macromolecules ; Mathematical analysis ; Molecular docking ; Phenolic compounds ; Phenols ; Quercetin ; Serum ; Serum albumin ; serum albumins ; Spectroscopic analysis ; spectroscopic technique ; Spectroscopic techniques ; Tb(III)–quercetin complex</subject><ispartof>Luminescence (Chichester, England), 2020-06, Vol.35 (4), p.512-524</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3497-a05e7d14bd8c09bfdabd59f8698335b73ba8db4aa3874bd126c922f2d130f7d93</citedby><cites>FETCH-LOGICAL-c3497-a05e7d14bd8c09bfdabd59f8698335b73ba8db4aa3874bd126c922f2d130f7d93</cites><orcidid>0000-0003-0458-8772 ; 0000-0002-7813-5226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbio.3757$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbio.3757$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31883206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaghaghi, Masoomeh</creatorcontrib><creatorcontrib>Rashtbari, Samaneh</creatorcontrib><creatorcontrib>Vejdani, Samira</creatorcontrib><creatorcontrib>Dehghan, Gholamreza</creatorcontrib><creatorcontrib>Jouyban, Abolghasem</creatorcontrib><creatorcontrib>Yekta, Reza</creatorcontrib><title>Exploring the interactions of a Tb(III)–quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies</title><title>Luminescence (Chichester, England)</title><addtitle>Luminescence</addtitle><description>Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with HSA and BSA using common spectroscopic techniques and a molecular docking study. Fluorescence data revealed that the inherent fluorescence emission of HSA and BSA was markedly quenched by the Tb–QUE complex through a static quenching mechanism, confirming stable complex formation (a ground‐state association) between albumins and Tb–QUE. Binding and thermodynamic parameters were obtained from the fluorescence spectra and the related equations at different temperatures under biological conditions. The binding constants (Kb) were calculated to be 0.8547 × 103 M−1 for HSA and 0.1363 × 103 M−1 for BSA at 298 K. Also, the number of binding sites (n) of the HSA/BSA–Tb–QUE systems was obtained to be approximately 1. Thermodynamic data calculations along with molecular docking results indicated that electrostatic interactions have a main role in the binding process of the Tb–QUE complex with HSA/BSA. Furthermore, molecular docking outputs revealed that the Tb–QUE complex has high affinity to bind to subdomain IIA of HSA and BSA. Binding distances (r) between HSA–Tb–QUE and BSA–Tb–QUE systems were also calculated using the Forster (fluorescence resonance energy transfer) method. It is expected that this study will provide a pathway for designing new compounds with multiple beneficial effects on human health from the phenolic compounds family such as the Tb–QUE complex.</description><subject>Albumins</subject><subject>Binding sites</subject><subject>Bovine serum albumin</subject><subject>Complex formation</subject><subject>Constants</subject><subject>Electrostatic properties</subject><subject>Emission analysis</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence quenching</subject><subject>Fluorescence resonance energy transfer</subject><subject>Human serum albumin</subject><subject>Macromolecules</subject><subject>Mathematical analysis</subject><subject>Molecular docking</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Quercetin</subject><subject>Serum</subject><subject>Serum albumin</subject><subject>serum albumins</subject><subject>Spectroscopic analysis</subject><subject>spectroscopic technique</subject><subject>Spectroscopic techniques</subject><subject>Tb(III)–quercetin complex</subject><issn>1522-7235</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kctO3DAUhq0KxF3qEyBLbIZFqC9JHHc3IAqRRmLBsI58C2PqxKmdCNixZts37JPUM1AqVerqWEefP_vXD8BnjM4wQuSLtP6MsoJ9Anu4ICRjJKdbH2da7IL9GB8QQmVZ8h2wS3FVUYLKPfB6-TQ4H2x_D8eVgbYfTRBqtL6P0LdQwKWc1XV9-uvl54_JBGVG20Plu8GZJ_hoxxWMJkwdFE5OnU2XZte3cyh6Dc9v56dfYRyMGoOPyg9Wbfadd0ZNTgSovfq-fjiOk7YmHoLtVrhojt7nAbj7drm8uM4WN1f1xXyRKZpzlglUGKZxLnWlEJetFlIXvK1KXlFaSEalqLTMhaAVSxAmpeKEtERjilqmOT0AszfvEHzKFMems1EZ50Rv_BQbQikmOS8YS-jJP-iDn0KffpcozjBDBOd_hSoFjcG0zRBsJ8Jzg1Gz7qdJ_TTrfhJ6_C6cZGf0B_inkARkb8Cjdeb5v6LmvL7ZCH8D9LGamQ</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Shaghaghi, Masoomeh</creator><creator>Rashtbari, Samaneh</creator><creator>Vejdani, Samira</creator><creator>Dehghan, Gholamreza</creator><creator>Jouyban, Abolghasem</creator><creator>Yekta, Reza</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0458-8772</orcidid><orcidid>https://orcid.org/0000-0002-7813-5226</orcidid></search><sort><creationdate>202006</creationdate><title>Exploring the interactions of a Tb(III)–quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies</title><author>Shaghaghi, Masoomeh ; Rashtbari, Samaneh ; Vejdani, Samira ; Dehghan, Gholamreza ; Jouyban, Abolghasem ; Yekta, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3497-a05e7d14bd8c09bfdabd59f8698335b73ba8db4aa3874bd126c922f2d130f7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Albumins</topic><topic>Binding sites</topic><topic>Bovine serum albumin</topic><topic>Complex formation</topic><topic>Constants</topic><topic>Electrostatic properties</topic><topic>Emission analysis</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence quenching</topic><topic>Fluorescence resonance energy transfer</topic><topic>Human serum albumin</topic><topic>Macromolecules</topic><topic>Mathematical analysis</topic><topic>Molecular docking</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Quercetin</topic><topic>Serum</topic><topic>Serum albumin</topic><topic>serum albumins</topic><topic>Spectroscopic analysis</topic><topic>spectroscopic technique</topic><topic>Spectroscopic techniques</topic><topic>Tb(III)–quercetin complex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaghaghi, Masoomeh</creatorcontrib><creatorcontrib>Rashtbari, Samaneh</creatorcontrib><creatorcontrib>Vejdani, Samira</creatorcontrib><creatorcontrib>Dehghan, Gholamreza</creatorcontrib><creatorcontrib>Jouyban, Abolghasem</creatorcontrib><creatorcontrib>Yekta, Reza</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaghaghi, Masoomeh</au><au>Rashtbari, Samaneh</au><au>Vejdani, Samira</au><au>Dehghan, Gholamreza</au><au>Jouyban, Abolghasem</au><au>Yekta, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the interactions of a Tb(III)–quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies</atitle><jtitle>Luminescence (Chichester, England)</jtitle><addtitle>Luminescence</addtitle><date>2020-06</date><risdate>2020</risdate><volume>35</volume><issue>4</issue><spage>512</spage><epage>524</epage><pages>512-524</pages><issn>1522-7235</issn><eissn>1522-7243</eissn><abstract>Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with HSA and BSA using common spectroscopic techniques and a molecular docking study. Fluorescence data revealed that the inherent fluorescence emission of HSA and BSA was markedly quenched by the Tb–QUE complex through a static quenching mechanism, confirming stable complex formation (a ground‐state association) between albumins and Tb–QUE. Binding and thermodynamic parameters were obtained from the fluorescence spectra and the related equations at different temperatures under biological conditions. The binding constants (Kb) were calculated to be 0.8547 × 103 M−1 for HSA and 0.1363 × 103 M−1 for BSA at 298 K. Also, the number of binding sites (n) of the HSA/BSA–Tb–QUE systems was obtained to be approximately 1. Thermodynamic data calculations along with molecular docking results indicated that electrostatic interactions have a main role in the binding process of the Tb–QUE complex with HSA/BSA. Furthermore, molecular docking outputs revealed that the Tb–QUE complex has high affinity to bind to subdomain IIA of HSA and BSA. Binding distances (r) between HSA–Tb–QUE and BSA–Tb–QUE systems were also calculated using the Forster (fluorescence resonance energy transfer) method. It is expected that this study will provide a pathway for designing new compounds with multiple beneficial effects on human health from the phenolic compounds family such as the Tb–QUE complex.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31883206</pmid><doi>10.1002/bio.3757</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0458-8772</orcidid><orcidid>https://orcid.org/0000-0002-7813-5226</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1522-7235
ispartof Luminescence (Chichester, England), 2020-06, Vol.35 (4), p.512-524
issn 1522-7235
1522-7243
language eng
recordid cdi_proquest_miscellaneous_2331249577
source Wiley Online Library All Journals
subjects Albumins
Binding sites
Bovine serum albumin
Complex formation
Constants
Electrostatic properties
Emission analysis
Energy transfer
Fluorescence
Fluorescence quenching
Fluorescence resonance energy transfer
Human serum albumin
Macromolecules
Mathematical analysis
Molecular docking
Phenolic compounds
Phenols
Quercetin
Serum
Serum albumin
serum albumins
Spectroscopic analysis
spectroscopic technique
Spectroscopic techniques
Tb(III)–quercetin complex
title Exploring the interactions of a Tb(III)–quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20interactions%20of%20a%20Tb(III)%E2%80%93quercetin%20complex%20with%20serum%20albumins%20(HSA%20and%20BSA):%20spectroscopic%20and%20molecular%20docking%20studies&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Shaghaghi,%20Masoomeh&rft.date=2020-06&rft.volume=35&rft.issue=4&rft.spage=512&rft.epage=524&rft.pages=512-524&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.3757&rft_dat=%3Cproquest_cross%3E2397170214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397170214&rft_id=info:pmid/31883206&rfr_iscdi=true