On the attractivity of imbedded systems

A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 1981-01, Vol.17 (6), p.853-860
1. Verfasser: Jocic, L B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 860
container_issue 6
container_start_page 853
container_title Automatica (Oxford)
container_volume 17
creator Jocic, L B
description A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This leads to an exact procedure for computation of attractivity region estimates for dynamic systems. An important feature of the method is the great reduction of conservativeness of the region estimate in the case of the overlapping decomposition of large-scale systems. When applied to a multimachine power system with non-uniform damping and transfer conductances, the method gives an enlarged estimate of the region of transient stability.
doi_str_mv 10.1016/0005-1098(81)90073-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23305849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>000510988190073X</els_id><sourcerecordid>23305849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-688ca19e9536e3c61f3ccb07b2a9d66fd5be0444a65923233da9395aa66403b53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMWsfCxGk7lJmmwEKb6g0I1CdyGT3MFIp1OTtDD_vlMrLl3dc-E7B84h5JLRO0aZvKeUipJRrW4Uu9WUTqBcHJERU4OoFMhjMvpDTslZSl_Dy5mqRuR6viryJxY252hdDtuQ-6JritDW6D36IvUpY5vOyUljlwkvfu-YfDw_vU9fy9n85W36OCsdgMilVMpZplELkAhOsgacq-mkrqz2UjZe1Eg551YKXUEF4K0GLayVklOoBYzJ1SF3HbvvDaZs2pAcLpd2hd0mmcFCheJ6APkBdLFLKWJj1jG0NvaGUbNfxewrm31lo5j5WcUsBtvDwYZDiW3AaJILuHLoQ0SXje_C_wE7fJxnmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23305849</pqid></control><display><type>article</type><title>On the attractivity of imbedded systems</title><source>Elsevier ScienceDirect Journals</source><creator>Jocic, L B</creator><creatorcontrib>Jocic, L B</creatorcontrib><description>A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This leads to an exact procedure for computation of attractivity region estimates for dynamic systems. An important feature of the method is the great reduction of conservativeness of the region estimate in the case of the overlapping decomposition of large-scale systems. When applied to a multimachine power system with non-uniform damping and transfer conductances, the method gives an enlarged estimate of the region of transient stability.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/0005-1098(81)90073-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>large-scale systems ; Liapunov methods ; Nonlinear systems ; power system control ; stability criteria</subject><ispartof>Automatica (Oxford), 1981-01, Vol.17 (6), p.853-860</ispartof><rights>1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-688ca19e9536e3c61f3ccb07b2a9d66fd5be0444a65923233da9395aa66403b53</citedby><cites>FETCH-LOGICAL-c335t-688ca19e9536e3c61f3ccb07b2a9d66fd5be0444a65923233da9395aa66403b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/000510988190073X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jocic, L B</creatorcontrib><title>On the attractivity of imbedded systems</title><title>Automatica (Oxford)</title><description>A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This leads to an exact procedure for computation of attractivity region estimates for dynamic systems. An important feature of the method is the great reduction of conservativeness of the region estimate in the case of the overlapping decomposition of large-scale systems. When applied to a multimachine power system with non-uniform damping and transfer conductances, the method gives an enlarged estimate of the region of transient stability.</description><subject>large-scale systems</subject><subject>Liapunov methods</subject><subject>Nonlinear systems</subject><subject>power system control</subject><subject>stability criteria</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMWsfCxGk7lJmmwEKb6g0I1CdyGT3MFIp1OTtDD_vlMrLl3dc-E7B84h5JLRO0aZvKeUipJRrW4Uu9WUTqBcHJERU4OoFMhjMvpDTslZSl_Dy5mqRuR6viryJxY252hdDtuQ-6JritDW6D36IvUpY5vOyUljlwkvfu-YfDw_vU9fy9n85W36OCsdgMilVMpZplELkAhOsgacq-mkrqz2UjZe1Eg551YKXUEF4K0GLayVklOoBYzJ1SF3HbvvDaZs2pAcLpd2hd0mmcFCheJ6APkBdLFLKWJj1jG0NvaGUbNfxewrm31lo5j5WcUsBtvDwYZDiW3AaJILuHLoQ0SXje_C_wE7fJxnmw</recordid><startdate>19810101</startdate><enddate>19810101</enddate><creator>Jocic, L B</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19810101</creationdate><title>On the attractivity of imbedded systems</title><author>Jocic, L B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-688ca19e9536e3c61f3ccb07b2a9d66fd5be0444a65923233da9395aa66403b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>large-scale systems</topic><topic>Liapunov methods</topic><topic>Nonlinear systems</topic><topic>power system control</topic><topic>stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jocic, L B</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jocic, L B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the attractivity of imbedded systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>1981-01-01</date><risdate>1981</risdate><volume>17</volume><issue>6</issue><spage>853</spage><epage>860</epage><pages>853-860</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This leads to an exact procedure for computation of attractivity region estimates for dynamic systems. An important feature of the method is the great reduction of conservativeness of the region estimate in the case of the overlapping decomposition of large-scale systems. When applied to a multimachine power system with non-uniform damping and transfer conductances, the method gives an enlarged estimate of the region of transient stability.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/0005-1098(81)90073-X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 1981-01, Vol.17 (6), p.853-860
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_23305849
source Elsevier ScienceDirect Journals
subjects large-scale systems
Liapunov methods
Nonlinear systems
power system control
stability criteria
title On the attractivity of imbedded systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20attractivity%20of%20imbedded%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=Jocic,%20L%20B&rft.date=1981-01-01&rft.volume=17&rft.issue=6&rft.spage=853&rft.epage=860&rft.pages=853-860&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/0005-1098(81)90073-X&rft_dat=%3Cproquest_cross%3E23305849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23305849&rft_id=info:pmid/&rft_els_id=000510988190073X&rfr_iscdi=true