On the attractivity of imbedded systems
A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 1981-01, Vol.17 (6), p.853-860 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 860 |
---|---|
container_issue | 6 |
container_start_page | 853 |
container_title | Automatica (Oxford) |
container_volume | 17 |
creator | Jocic, L B |
description | A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This leads to an exact procedure for computation of attractivity region estimates for dynamic systems. An important feature of the method is the great reduction of conservativeness of the region estimate in the case of the overlapping decomposition of large-scale systems. When applied to a multimachine power system with non-uniform damping and transfer conductances, the method gives an enlarged estimate of the region of transient stability. |
doi_str_mv | 10.1016/0005-1098(81)90073-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23305849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>000510988190073X</els_id><sourcerecordid>23305849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-688ca19e9536e3c61f3ccb07b2a9d66fd5be0444a65923233da9395aa66403b53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMWsfCxGk7lJmmwEKb6g0I1CdyGT3MFIp1OTtDD_vlMrLl3dc-E7B84h5JLRO0aZvKeUipJRrW4Uu9WUTqBcHJERU4OoFMhjMvpDTslZSl_Dy5mqRuR6viryJxY252hdDtuQ-6JritDW6D36IvUpY5vOyUljlwkvfu-YfDw_vU9fy9n85W36OCsdgMilVMpZplELkAhOsgacq-mkrqz2UjZe1Eg551YKXUEF4K0GLayVklOoBYzJ1SF3HbvvDaZs2pAcLpd2hd0mmcFCheJ6APkBdLFLKWJj1jG0NvaGUbNfxewrm31lo5j5WcUsBtvDwYZDiW3AaJILuHLoQ0SXje_C_wE7fJxnmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23305849</pqid></control><display><type>article</type><title>On the attractivity of imbedded systems</title><source>Elsevier ScienceDirect Journals</source><creator>Jocic, L B</creator><creatorcontrib>Jocic, L B</creatorcontrib><description>A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This leads to an exact procedure for computation of attractivity region estimates for dynamic systems. An important feature of the method is the great reduction of conservativeness of the region estimate in the case of the overlapping decomposition of large-scale systems. When applied to a multimachine power system with non-uniform damping and transfer conductances, the method gives an enlarged estimate of the region of transient stability.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/0005-1098(81)90073-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>large-scale systems ; Liapunov methods ; Nonlinear systems ; power system control ; stability criteria</subject><ispartof>Automatica (Oxford), 1981-01, Vol.17 (6), p.853-860</ispartof><rights>1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-688ca19e9536e3c61f3ccb07b2a9d66fd5be0444a65923233da9395aa66403b53</citedby><cites>FETCH-LOGICAL-c335t-688ca19e9536e3c61f3ccb07b2a9d66fd5be0444a65923233da9395aa66403b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/000510988190073X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jocic, L B</creatorcontrib><title>On the attractivity of imbedded systems</title><title>Automatica (Oxford)</title><description>A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This leads to an exact procedure for computation of attractivity region estimates for dynamic systems. An important feature of the method is the great reduction of conservativeness of the region estimate in the case of the overlapping decomposition of large-scale systems. When applied to a multimachine power system with non-uniform damping and transfer conductances, the method gives an enlarged estimate of the region of transient stability.</description><subject>large-scale systems</subject><subject>Liapunov methods</subject><subject>Nonlinear systems</subject><subject>power system control</subject><subject>stability criteria</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMWsfCxGk7lJmmwEKb6g0I1CdyGT3MFIp1OTtDD_vlMrLl3dc-E7B84h5JLRO0aZvKeUipJRrW4Uu9WUTqBcHJERU4OoFMhjMvpDTslZSl_Dy5mqRuR6viryJxY252hdDtuQ-6JritDW6D36IvUpY5vOyUljlwkvfu-YfDw_vU9fy9n85W36OCsdgMilVMpZplELkAhOsgacq-mkrqz2UjZe1Eg551YKXUEF4K0GLayVklOoBYzJ1SF3HbvvDaZs2pAcLpd2hd0mmcFCheJ6APkBdLFLKWJj1jG0NvaGUbNfxewrm31lo5j5WcUsBtvDwYZDiW3AaJILuHLoQ0SXje_C_wE7fJxnmw</recordid><startdate>19810101</startdate><enddate>19810101</enddate><creator>Jocic, L B</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19810101</creationdate><title>On the attractivity of imbedded systems</title><author>Jocic, L B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-688ca19e9536e3c61f3ccb07b2a9d66fd5be0444a65923233da9395aa66403b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>large-scale systems</topic><topic>Liapunov methods</topic><topic>Nonlinear systems</topic><topic>power system control</topic><topic>stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jocic, L B</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jocic, L B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the attractivity of imbedded systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>1981-01-01</date><risdate>1981</risdate><volume>17</volume><issue>6</issue><spage>853</spage><epage>860</epage><pages>853-860</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>A new approach designed to aid in the construction of Liapunov functions is proposed. It is based on the notion of partial properties. A given dynamic system is imbedded into an augmented system whose attractivity with respect to a part of variables is deduced by means of an auxiliary function. This leads to an exact procedure for computation of attractivity region estimates for dynamic systems. An important feature of the method is the great reduction of conservativeness of the region estimate in the case of the overlapping decomposition of large-scale systems. When applied to a multimachine power system with non-uniform damping and transfer conductances, the method gives an enlarged estimate of the region of transient stability.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/0005-1098(81)90073-X</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 1981-01, Vol.17 (6), p.853-860 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_23305849 |
source | Elsevier ScienceDirect Journals |
subjects | large-scale systems Liapunov methods Nonlinear systems power system control stability criteria |
title | On the attractivity of imbedded systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20attractivity%20of%20imbedded%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=Jocic,%20L%20B&rft.date=1981-01-01&rft.volume=17&rft.issue=6&rft.spage=853&rft.epage=860&rft.pages=853-860&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/0005-1098(81)90073-X&rft_dat=%3Cproquest_cross%3E23305849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23305849&rft_id=info:pmid/&rft_els_id=000510988190073X&rfr_iscdi=true |