SdrA, an NADP(H)‐regenerating enzyme, is crucial for Coxiella burnetii to resist oxidative stress and replicate intracellularly

SUMMARY Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is a Gram‐negative bacterium that replicates inside macrophages within a highly oxidative vacuole. Screening of a transposon mutant library suggested that sdrA, which encodes a putative short‐chain dehydrogenase, is requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular microbiology 2020-05, Vol.22 (5), p.e13154-n/a
Hauptverfasser: Bitew, Mebratu A., Hofmann, Janine, De Souza, David P., Wawegama, Nadeeka K., Newton, Hayley J., Sansom, Fiona M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e13154
container_title Cellular microbiology
container_volume 22
creator Bitew, Mebratu A.
Hofmann, Janine
De Souza, David P.
Wawegama, Nadeeka K.
Newton, Hayley J.
Sansom, Fiona M.
description SUMMARY Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is a Gram‐negative bacterium that replicates inside macrophages within a highly oxidative vacuole. Screening of a transposon mutant library suggested that sdrA, which encodes a putative short‐chain dehydrogenase, is required for intracellular replication. Short‐chain dehydrogenases are NADP(H)‐dependent oxidoreductases, and SdrA contains a predicted NADP+ binding site, suggesting it may facilitate NADP(H) regeneration by C. burnetii, a key process for surviving oxidative stress. Purified recombinant 6×His‐SdrA was able to convert NADP+ to NADP(H) in vitro. Mutation to alanine of a conserved glycine residue at position 12 within the predicted NADP binding site abolished significant enzymatic activity. Complementation of the sdrA mutant (sdrA::Tn) with plasmid‐expressed SdrA restored intracellular replication to wild‐type levels, but expressing enzymatically inactive G12A_SdrA did not. The sdrA::Tn mutant was more susceptible in vitro to oxidative stress, and treating infected host cells with L‐ascorbate, an anti‐oxidant, partially rescued the intracellular growth defect of sdrA::Tn. Finally, stable isotope labelling studies demonstrated a shift in flux through metabolic pathways in sdrA::Tn consistent with the presence of increased oxidative stress, and host cells infected with sdrA::Tn had elevated levels of reactive oxygen species compared with C. burnetii NMII.
doi_str_mv 10.1111/cmi.13154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2330333382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386108120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-d3cd53080a71c4b1023c9024fd50beb0f4059443430d510612727fb79ff7b6563</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMo1tvCF5CAmwq25iSZS5elXqFeQF0PmcyZkjKXmsyodaVv4DP6JEZbXQieTULOdz5O-AnZBdYHX0e6NH0QEMgVsgEy5L0g5nz19w6yQzadmzIGYQSwTjoC4ogPgnCDvN1mdnhIVUWvhsc33fODj9d3ixOs0KrGVBOK1cu8xENqHNW21UYVNK8tHdXPBotC0bS1FTbG0KamFp1xDfWtzA8_InWNf3LenvnerDBaNUhN1Vil_XBbKFvMt8largqHO8tzi9yfntyNznvj67OL0XDc0yKOZS8TOgsEi5mKQMsUGBd6wLjMs4ClmLJcsmAgpZCCZQGwEHjEozyNBnkepWEQii3SXXhntn5o0TVJadzXGqrCunUJF4IJXzH36P4fdFr7b_rtPBWHwGLgzFMHC0rb2jmLeTKzplR2ngBLvnJJfC7Jdy6e3Vsa27TE7Jf8CcIDRwvgyRQ4_9-UjC4vFspP8-aXBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386108120</pqid></control><display><type>article</type><title>SdrA, an NADP(H)‐regenerating enzyme, is crucial for Coxiella burnetii to resist oxidative stress and replicate intracellularly</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bitew, Mebratu A. ; Hofmann, Janine ; De Souza, David P. ; Wawegama, Nadeeka K. ; Newton, Hayley J. ; Sansom, Fiona M.</creator><creatorcontrib>Bitew, Mebratu A. ; Hofmann, Janine ; De Souza, David P. ; Wawegama, Nadeeka K. ; Newton, Hayley J. ; Sansom, Fiona M.</creatorcontrib><description>SUMMARY Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is a Gram‐negative bacterium that replicates inside macrophages within a highly oxidative vacuole. Screening of a transposon mutant library suggested that sdrA, which encodes a putative short‐chain dehydrogenase, is required for intracellular replication. Short‐chain dehydrogenases are NADP(H)‐dependent oxidoreductases, and SdrA contains a predicted NADP+ binding site, suggesting it may facilitate NADP(H) regeneration by C. burnetii, a key process for surviving oxidative stress. Purified recombinant 6×His‐SdrA was able to convert NADP+ to NADP(H) in vitro. Mutation to alanine of a conserved glycine residue at position 12 within the predicted NADP binding site abolished significant enzymatic activity. Complementation of the sdrA mutant (sdrA::Tn) with plasmid‐expressed SdrA restored intracellular replication to wild‐type levels, but expressing enzymatically inactive G12A_SdrA did not. The sdrA::Tn mutant was more susceptible in vitro to oxidative stress, and treating infected host cells with L‐ascorbate, an anti‐oxidant, partially rescued the intracellular growth defect of sdrA::Tn. Finally, stable isotope labelling studies demonstrated a shift in flux through metabolic pathways in sdrA::Tn consistent with the presence of increased oxidative stress, and host cells infected with sdrA::Tn had elevated levels of reactive oxygen species compared with C. burnetii NMII.</description><identifier>ISSN: 1462-5814</identifier><identifier>EISSN: 1462-5822</identifier><identifier>DOI: 10.1111/cmi.13154</identifier><identifier>PMID: 31872956</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Alanine ; Ascorbic acid ; Binding sites ; Chains ; Coxiella burnetii ; Enzymatic activity ; Glycine ; Intracellular ; Labeling ; Macrophages ; Metabolic flux ; Metabolic pathways ; Mutants ; Mutation ; NADP ; NADP(H) metabolism ; Oxidants ; Oxidative stress ; Oxidizing agents ; Q fever ; Reactive oxygen species ; Regeneration ; Replication ; short chain dehydrogenase ; Stable isotopes ; Zoonoses</subject><ispartof>Cellular microbiology, 2020-05, Vol.22 (5), p.e13154-n/a</ispartof><rights>2019 John Wiley &amp; Sons Ltd</rights><rights>2019 John Wiley &amp; Sons Ltd.</rights><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-d3cd53080a71c4b1023c9024fd50beb0f4059443430d510612727fb79ff7b6563</citedby><cites>FETCH-LOGICAL-c3884-d3cd53080a71c4b1023c9024fd50beb0f4059443430d510612727fb79ff7b6563</cites><orcidid>0000-0002-9240-2001 ; 0000-0002-9433-2545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcmi.13154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcmi.13154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31872956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bitew, Mebratu A.</creatorcontrib><creatorcontrib>Hofmann, Janine</creatorcontrib><creatorcontrib>De Souza, David P.</creatorcontrib><creatorcontrib>Wawegama, Nadeeka K.</creatorcontrib><creatorcontrib>Newton, Hayley J.</creatorcontrib><creatorcontrib>Sansom, Fiona M.</creatorcontrib><title>SdrA, an NADP(H)‐regenerating enzyme, is crucial for Coxiella burnetii to resist oxidative stress and replicate intracellularly</title><title>Cellular microbiology</title><addtitle>Cell Microbiol</addtitle><description>SUMMARY Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is a Gram‐negative bacterium that replicates inside macrophages within a highly oxidative vacuole. Screening of a transposon mutant library suggested that sdrA, which encodes a putative short‐chain dehydrogenase, is required for intracellular replication. Short‐chain dehydrogenases are NADP(H)‐dependent oxidoreductases, and SdrA contains a predicted NADP+ binding site, suggesting it may facilitate NADP(H) regeneration by C. burnetii, a key process for surviving oxidative stress. Purified recombinant 6×His‐SdrA was able to convert NADP+ to NADP(H) in vitro. Mutation to alanine of a conserved glycine residue at position 12 within the predicted NADP binding site abolished significant enzymatic activity. Complementation of the sdrA mutant (sdrA::Tn) with plasmid‐expressed SdrA restored intracellular replication to wild‐type levels, but expressing enzymatically inactive G12A_SdrA did not. The sdrA::Tn mutant was more susceptible in vitro to oxidative stress, and treating infected host cells with L‐ascorbate, an anti‐oxidant, partially rescued the intracellular growth defect of sdrA::Tn. Finally, stable isotope labelling studies demonstrated a shift in flux through metabolic pathways in sdrA::Tn consistent with the presence of increased oxidative stress, and host cells infected with sdrA::Tn had elevated levels of reactive oxygen species compared with C. burnetii NMII.</description><subject>Alanine</subject><subject>Ascorbic acid</subject><subject>Binding sites</subject><subject>Chains</subject><subject>Coxiella burnetii</subject><subject>Enzymatic activity</subject><subject>Glycine</subject><subject>Intracellular</subject><subject>Labeling</subject><subject>Macrophages</subject><subject>Metabolic flux</subject><subject>Metabolic pathways</subject><subject>Mutants</subject><subject>Mutation</subject><subject>NADP</subject><subject>NADP(H) metabolism</subject><subject>Oxidants</subject><subject>Oxidative stress</subject><subject>Oxidizing agents</subject><subject>Q fever</subject><subject>Reactive oxygen species</subject><subject>Regeneration</subject><subject>Replication</subject><subject>short chain dehydrogenase</subject><subject>Stable isotopes</subject><subject>Zoonoses</subject><issn>1462-5814</issn><issn>1462-5822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kctKAzEUhoMo1tvCF5CAmwq25iSZS5elXqFeQF0PmcyZkjKXmsyodaVv4DP6JEZbXQieTULOdz5O-AnZBdYHX0e6NH0QEMgVsgEy5L0g5nz19w6yQzadmzIGYQSwTjoC4ogPgnCDvN1mdnhIVUWvhsc33fODj9d3ixOs0KrGVBOK1cu8xENqHNW21UYVNK8tHdXPBotC0bS1FTbG0KamFp1xDfWtzA8_InWNf3LenvnerDBaNUhN1Vil_XBbKFvMt8largqHO8tzi9yfntyNznvj67OL0XDc0yKOZS8TOgsEi5mKQMsUGBd6wLjMs4ClmLJcsmAgpZCCZQGwEHjEozyNBnkepWEQii3SXXhntn5o0TVJadzXGqrCunUJF4IJXzH36P4fdFr7b_rtPBWHwGLgzFMHC0rb2jmLeTKzplR2ngBLvnJJfC7Jdy6e3Vsa27TE7Jf8CcIDRwvgyRQ4_9-UjC4vFspP8-aXBQ</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Bitew, Mebratu A.</creator><creator>Hofmann, Janine</creator><creator>De Souza, David P.</creator><creator>Wawegama, Nadeeka K.</creator><creator>Newton, Hayley J.</creator><creator>Sansom, Fiona M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9240-2001</orcidid><orcidid>https://orcid.org/0000-0002-9433-2545</orcidid></search><sort><creationdate>202005</creationdate><title>SdrA, an NADP(H)‐regenerating enzyme, is crucial for Coxiella burnetii to resist oxidative stress and replicate intracellularly</title><author>Bitew, Mebratu A. ; Hofmann, Janine ; De Souza, David P. ; Wawegama, Nadeeka K. ; Newton, Hayley J. ; Sansom, Fiona M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-d3cd53080a71c4b1023c9024fd50beb0f4059443430d510612727fb79ff7b6563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alanine</topic><topic>Ascorbic acid</topic><topic>Binding sites</topic><topic>Chains</topic><topic>Coxiella burnetii</topic><topic>Enzymatic activity</topic><topic>Glycine</topic><topic>Intracellular</topic><topic>Labeling</topic><topic>Macrophages</topic><topic>Metabolic flux</topic><topic>Metabolic pathways</topic><topic>Mutants</topic><topic>Mutation</topic><topic>NADP</topic><topic>NADP(H) metabolism</topic><topic>Oxidants</topic><topic>Oxidative stress</topic><topic>Oxidizing agents</topic><topic>Q fever</topic><topic>Reactive oxygen species</topic><topic>Regeneration</topic><topic>Replication</topic><topic>short chain dehydrogenase</topic><topic>Stable isotopes</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bitew, Mebratu A.</creatorcontrib><creatorcontrib>Hofmann, Janine</creatorcontrib><creatorcontrib>De Souza, David P.</creatorcontrib><creatorcontrib>Wawegama, Nadeeka K.</creatorcontrib><creatorcontrib>Newton, Hayley J.</creatorcontrib><creatorcontrib>Sansom, Fiona M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bitew, Mebratu A.</au><au>Hofmann, Janine</au><au>De Souza, David P.</au><au>Wawegama, Nadeeka K.</au><au>Newton, Hayley J.</au><au>Sansom, Fiona M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SdrA, an NADP(H)‐regenerating enzyme, is crucial for Coxiella burnetii to resist oxidative stress and replicate intracellularly</atitle><jtitle>Cellular microbiology</jtitle><addtitle>Cell Microbiol</addtitle><date>2020-05</date><risdate>2020</risdate><volume>22</volume><issue>5</issue><spage>e13154</spage><epage>n/a</epage><pages>e13154-n/a</pages><issn>1462-5814</issn><eissn>1462-5822</eissn><abstract>SUMMARY Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is a Gram‐negative bacterium that replicates inside macrophages within a highly oxidative vacuole. Screening of a transposon mutant library suggested that sdrA, which encodes a putative short‐chain dehydrogenase, is required for intracellular replication. Short‐chain dehydrogenases are NADP(H)‐dependent oxidoreductases, and SdrA contains a predicted NADP+ binding site, suggesting it may facilitate NADP(H) regeneration by C. burnetii, a key process for surviving oxidative stress. Purified recombinant 6×His‐SdrA was able to convert NADP+ to NADP(H) in vitro. Mutation to alanine of a conserved glycine residue at position 12 within the predicted NADP binding site abolished significant enzymatic activity. Complementation of the sdrA mutant (sdrA::Tn) with plasmid‐expressed SdrA restored intracellular replication to wild‐type levels, but expressing enzymatically inactive G12A_SdrA did not. The sdrA::Tn mutant was more susceptible in vitro to oxidative stress, and treating infected host cells with L‐ascorbate, an anti‐oxidant, partially rescued the intracellular growth defect of sdrA::Tn. Finally, stable isotope labelling studies demonstrated a shift in flux through metabolic pathways in sdrA::Tn consistent with the presence of increased oxidative stress, and host cells infected with sdrA::Tn had elevated levels of reactive oxygen species compared with C. burnetii NMII.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31872956</pmid><doi>10.1111/cmi.13154</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9240-2001</orcidid><orcidid>https://orcid.org/0000-0002-9433-2545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-5814
ispartof Cellular microbiology, 2020-05, Vol.22 (5), p.e13154-n/a
issn 1462-5814
1462-5822
language eng
recordid cdi_proquest_miscellaneous_2330333382
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alanine
Ascorbic acid
Binding sites
Chains
Coxiella burnetii
Enzymatic activity
Glycine
Intracellular
Labeling
Macrophages
Metabolic flux
Metabolic pathways
Mutants
Mutation
NADP
NADP(H) metabolism
Oxidants
Oxidative stress
Oxidizing agents
Q fever
Reactive oxygen species
Regeneration
Replication
short chain dehydrogenase
Stable isotopes
Zoonoses
title SdrA, an NADP(H)‐regenerating enzyme, is crucial for Coxiella burnetii to resist oxidative stress and replicate intracellularly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SdrA,%20an%20NADP(H)%E2%80%90regenerating%20enzyme,%20is%20crucial%20for%20Coxiella%20burnetii%20to%20resist%20oxidative%20stress%20and%20replicate%20intracellularly&rft.jtitle=Cellular%20microbiology&rft.au=Bitew,%20Mebratu%20A.&rft.date=2020-05&rft.volume=22&rft.issue=5&rft.spage=e13154&rft.epage=n/a&rft.pages=e13154-n/a&rft.issn=1462-5814&rft.eissn=1462-5822&rft_id=info:doi/10.1111/cmi.13154&rft_dat=%3Cproquest_cross%3E2386108120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386108120&rft_id=info:pmid/31872956&rfr_iscdi=true