Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: application to the time-shift technique

This study is devoted to the development and application of a Monte Carlo ray-tracing model to simulate light scattering when a colloid suspension droplet passes through a highly focused Gaussian laser sheet. Within this study, a colloidal suspension droplet refers to a spherical droplet containing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-12, Vol.27 (25), p.36388-36404
Hauptverfasser: Li, Lingxi, Stegmann, Patrick G, Rosenkranz, Simon, Schäfer, Walter, Tropea, Cameron
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36404
container_issue 25
container_start_page 36388
container_title Optics express
container_volume 27
creator Li, Lingxi
Stegmann, Patrick G
Rosenkranz, Simon
Schäfer, Walter
Tropea, Cameron
description This study is devoted to the development and application of a Monte Carlo ray-tracing model to simulate light scattering when a colloid suspension droplet passes through a highly focused Gaussian laser sheet. Within this study, a colloidal suspension droplet refers to a spherical droplet containing multiple spherical inclusions. Such scattering scenarios arise when using the time-shift measurement technique for particle sizing. The incident laser sheet is treated as a large number of polarized light rays: the Stokes vector of each light ray is tracked, achieved by multiplication of the rotation matrix and the Mueller matrix after each scattering event. For the Monte Carlo simulation of light scattering, a very important issue is to generate the deflection angle and azimuthal angle after each scattering event. The scattering from embedded inclusions is computed using the Lorenz-Mie theory and by employing the rejection sampling technique to update the new propagation direction. Multi-reflection and refraction within the droplet is accounted for, as is total reflection at the drop interface. For this, the Mueller matrix formulation is invoked at the drop surface to update the Stokes vector. To validate this simulation code, the scattering diagram from a nanoparticle is computed with this Monte Carlo method and compared with the scattering diagram computed with the Lorenz-Mie theory, the agreement is excellent. This Monte Carlo code is then applied to simulate signals arising from a time-shift device, when a colloid suspension droplet passes through a focused polarized laser sheet, with the objective of measuring the concentration of colloidal particles in the droplet. Measurements verify the ability of the code to properly simulate this light scattering scenario.
doi_str_mv 10.1364/OE.27.036388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2330332352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330332352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-d34ecaad2fff53663769fb06abff3c5f43fe167c5836fa04b9c7f002b92bfaee3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQQC0E4ntjRh4ZSHF8SZywoap8SEUdgDlynDMxcuJgOwPs_G9aFRDTnXRP76RHyFnKZikU2dVqMeNixqCAstwhhymrsiRjpdj9tx-QoxDeGEszUYl9cgBpKSBLq0Py9WT6ycpo3ECdpta8dpEGJWNEb4ZXqr3rqaTKWetMKy1tvRstRjqFzVnS0VnpzSe29NENEelceutoj7Fz7TWV42iN2uqjo7FDGk2PSeiMjjSi6gbzPuEJ2dPSBjz9mcfk5XbxPL9Plqu7h_nNMlHAq5i0kKGSsuVa6xyKAkRR6YYVstEaVK4z0JgWQuUlFFqyrKmU0IzxpuKNlohwTC623tG79dsQ694EhdbKAd0Uag7AADjkfI1eblHlXQgedT1600v_Uaes3oSvV4uai3obfo2f_5inpsf2D_4tDd88nYFP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330332352</pqid></control><display><type>article</type><title>Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: application to the time-shift technique</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Lingxi ; Stegmann, Patrick G ; Rosenkranz, Simon ; Schäfer, Walter ; Tropea, Cameron</creator><creatorcontrib>Li, Lingxi ; Stegmann, Patrick G ; Rosenkranz, Simon ; Schäfer, Walter ; Tropea, Cameron</creatorcontrib><description>This study is devoted to the development and application of a Monte Carlo ray-tracing model to simulate light scattering when a colloid suspension droplet passes through a highly focused Gaussian laser sheet. Within this study, a colloidal suspension droplet refers to a spherical droplet containing multiple spherical inclusions. Such scattering scenarios arise when using the time-shift measurement technique for particle sizing. The incident laser sheet is treated as a large number of polarized light rays: the Stokes vector of each light ray is tracked, achieved by multiplication of the rotation matrix and the Mueller matrix after each scattering event. For the Monte Carlo simulation of light scattering, a very important issue is to generate the deflection angle and azimuthal angle after each scattering event. The scattering from embedded inclusions is computed using the Lorenz-Mie theory and by employing the rejection sampling technique to update the new propagation direction. Multi-reflection and refraction within the droplet is accounted for, as is total reflection at the drop interface. For this, the Mueller matrix formulation is invoked at the drop surface to update the Stokes vector. To validate this simulation code, the scattering diagram from a nanoparticle is computed with this Monte Carlo method and compared with the scattering diagram computed with the Lorenz-Mie theory, the agreement is excellent. This Monte Carlo code is then applied to simulate signals arising from a time-shift device, when a colloid suspension droplet passes through a focused polarized laser sheet, with the objective of measuring the concentration of colloidal particles in the droplet. Measurements verify the ability of the code to properly simulate this light scattering scenario.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.27.036388</identifier><identifier>PMID: 31873419</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2019-12, Vol.27 (25), p.36388-36404</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-d34ecaad2fff53663769fb06abff3c5f43fe167c5836fa04b9c7f002b92bfaee3</citedby><cites>FETCH-LOGICAL-c329t-d34ecaad2fff53663769fb06abff3c5f43fe167c5836fa04b9c7f002b92bfaee3</cites><orcidid>0000-0002-1506-9655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lingxi</creatorcontrib><creatorcontrib>Stegmann, Patrick G</creatorcontrib><creatorcontrib>Rosenkranz, Simon</creatorcontrib><creatorcontrib>Schäfer, Walter</creatorcontrib><creatorcontrib>Tropea, Cameron</creatorcontrib><title>Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: application to the time-shift technique</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>This study is devoted to the development and application of a Monte Carlo ray-tracing model to simulate light scattering when a colloid suspension droplet passes through a highly focused Gaussian laser sheet. Within this study, a colloidal suspension droplet refers to a spherical droplet containing multiple spherical inclusions. Such scattering scenarios arise when using the time-shift measurement technique for particle sizing. The incident laser sheet is treated as a large number of polarized light rays: the Stokes vector of each light ray is tracked, achieved by multiplication of the rotation matrix and the Mueller matrix after each scattering event. For the Monte Carlo simulation of light scattering, a very important issue is to generate the deflection angle and azimuthal angle after each scattering event. The scattering from embedded inclusions is computed using the Lorenz-Mie theory and by employing the rejection sampling technique to update the new propagation direction. Multi-reflection and refraction within the droplet is accounted for, as is total reflection at the drop interface. For this, the Mueller matrix formulation is invoked at the drop surface to update the Stokes vector. To validate this simulation code, the scattering diagram from a nanoparticle is computed with this Monte Carlo method and compared with the scattering diagram computed with the Lorenz-Mie theory, the agreement is excellent. This Monte Carlo code is then applied to simulate signals arising from a time-shift device, when a colloid suspension droplet passes through a focused polarized laser sheet, with the objective of measuring the concentration of colloidal particles in the droplet. Measurements verify the ability of the code to properly simulate this light scattering scenario.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQQC0E4ntjRh4ZSHF8SZywoap8SEUdgDlynDMxcuJgOwPs_G9aFRDTnXRP76RHyFnKZikU2dVqMeNixqCAstwhhymrsiRjpdj9tx-QoxDeGEszUYl9cgBpKSBLq0Py9WT6ycpo3ECdpta8dpEGJWNEb4ZXqr3rqaTKWetMKy1tvRstRjqFzVnS0VnpzSe29NENEelceutoj7Fz7TWV42iN2uqjo7FDGk2PSeiMjjSi6gbzPuEJ2dPSBjz9mcfk5XbxPL9Plqu7h_nNMlHAq5i0kKGSsuVa6xyKAkRR6YYVstEaVK4z0JgWQuUlFFqyrKmU0IzxpuKNlohwTC623tG79dsQ694EhdbKAd0Uag7AADjkfI1eblHlXQgedT1600v_Uaes3oSvV4uai3obfo2f_5inpsf2D_4tDd88nYFP</recordid><startdate>20191209</startdate><enddate>20191209</enddate><creator>Li, Lingxi</creator><creator>Stegmann, Patrick G</creator><creator>Rosenkranz, Simon</creator><creator>Schäfer, Walter</creator><creator>Tropea, Cameron</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1506-9655</orcidid></search><sort><creationdate>20191209</creationdate><title>Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: application to the time-shift technique</title><author>Li, Lingxi ; Stegmann, Patrick G ; Rosenkranz, Simon ; Schäfer, Walter ; Tropea, Cameron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-d34ecaad2fff53663769fb06abff3c5f43fe167c5836fa04b9c7f002b92bfaee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lingxi</creatorcontrib><creatorcontrib>Stegmann, Patrick G</creatorcontrib><creatorcontrib>Rosenkranz, Simon</creatorcontrib><creatorcontrib>Schäfer, Walter</creatorcontrib><creatorcontrib>Tropea, Cameron</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lingxi</au><au>Stegmann, Patrick G</au><au>Rosenkranz, Simon</au><au>Schäfer, Walter</au><au>Tropea, Cameron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: application to the time-shift technique</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2019-12-09</date><risdate>2019</risdate><volume>27</volume><issue>25</issue><spage>36388</spage><epage>36404</epage><pages>36388-36404</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>This study is devoted to the development and application of a Monte Carlo ray-tracing model to simulate light scattering when a colloid suspension droplet passes through a highly focused Gaussian laser sheet. Within this study, a colloidal suspension droplet refers to a spherical droplet containing multiple spherical inclusions. Such scattering scenarios arise when using the time-shift measurement technique for particle sizing. The incident laser sheet is treated as a large number of polarized light rays: the Stokes vector of each light ray is tracked, achieved by multiplication of the rotation matrix and the Mueller matrix after each scattering event. For the Monte Carlo simulation of light scattering, a very important issue is to generate the deflection angle and azimuthal angle after each scattering event. The scattering from embedded inclusions is computed using the Lorenz-Mie theory and by employing the rejection sampling technique to update the new propagation direction. Multi-reflection and refraction within the droplet is accounted for, as is total reflection at the drop interface. For this, the Mueller matrix formulation is invoked at the drop surface to update the Stokes vector. To validate this simulation code, the scattering diagram from a nanoparticle is computed with this Monte Carlo method and compared with the scattering diagram computed with the Lorenz-Mie theory, the agreement is excellent. This Monte Carlo code is then applied to simulate signals arising from a time-shift device, when a colloid suspension droplet passes through a focused polarized laser sheet, with the objective of measuring the concentration of colloidal particles in the droplet. Measurements verify the ability of the code to properly simulate this light scattering scenario.</abstract><cop>United States</cop><pmid>31873419</pmid><doi>10.1364/OE.27.036388</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1506-9655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2019-12, Vol.27 (25), p.36388-36404
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2330332352
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Simulation of light scattering from a colloidal droplet using a polarized Monte Carlo method: application to the time-shift technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20light%20scattering%20from%20a%20colloidal%20droplet%20using%20a%20polarized%20Monte%20Carlo%20method:%20application%20to%20the%20time-shift%20technique&rft.jtitle=Optics%20express&rft.au=Li,%20Lingxi&rft.date=2019-12-09&rft.volume=27&rft.issue=25&rft.spage=36388&rft.epage=36404&rft.pages=36388-36404&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.27.036388&rft_dat=%3Cproquest_cross%3E2330332352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330332352&rft_id=info:pmid/31873419&rfr_iscdi=true