Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis

Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2019-11, Vol.100 (5-1), p.052138-052138, Article 052138
Hauptverfasser: Zarepour, Mahdi, Perotti, Juan I, Billoni, Orlando V, Chialvo, Dante R, Cannas, Sergio A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 052138
container_issue 5-1
container_start_page 052138
container_title Physical review. E
container_volume 100
creator Zarepour, Mahdi
Perotti, Juan I
Billoni, Orlando V
Chialvo, Dante R
Cannas, Sergio A
description Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.
doi_str_mv 10.1103/PhysRevE.100.052138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2330330467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330330467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-d1e839cc693761fc84079e43140a4e2da2386b236e2a0e844c154a849cc164203</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRbKn9BYLsoy-ps5fcfCulXqCgiH0O281EVzabmmkq9dcb6QUGzjCccwY-xq4FTIQAdff6uaM33M4nAmACsRQqO2NDqVOIAGJ1ftp1PGBjoi8AEAnkqZCXbKBElgLIeMhwGdwWWzKem1Dy0ITudAjYtb2Uu2BqZ4k3gVNtvOc_TetLbpsQ0G6aGumeT3nlgttgRO4XOVnjXfjoK43fkaMrdlEZTzg-6IgtH-bvs6do8fL4PJsuIqsg3kSlwEzl1ia5ShNR2UxDmqNWQoPRKEsjVZaspEpQGsBMaytibTLdR0SiJagRu933rtvmu0PaFLUji96bgE1HhVQK-tFJ2lvV3mrbhqjFqli3rjbtrhBQ_CMujoj7AxR7xH3q5vCgW9VYnjJHoOoPznl5GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330330467</pqid></control><display><type>article</type><title>Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis</title><source>American Physical Society Journals</source><creator>Zarepour, Mahdi ; Perotti, Juan I ; Billoni, Orlando V ; Chialvo, Dante R ; Cannas, Sergio A</creator><creatorcontrib>Zarepour, Mahdi ; Perotti, Juan I ; Billoni, Orlando V ; Chialvo, Dante R ; Cannas, Sergio A</creatorcontrib><description>Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.100.052138</identifier><identifier>PMID: 31870025</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2019-11, Vol.100 (5-1), p.052138-052138, Article 052138</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-d1e839cc693761fc84079e43140a4e2da2386b236e2a0e844c154a849cc164203</citedby><cites>FETCH-LOGICAL-c305t-d1e839cc693761fc84079e43140a4e2da2386b236e2a0e844c154a849cc164203</cites><orcidid>0000-0001-7331-3532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31870025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarepour, Mahdi</creatorcontrib><creatorcontrib>Perotti, Juan I</creatorcontrib><creatorcontrib>Billoni, Orlando V</creatorcontrib><creatorcontrib>Chialvo, Dante R</creatorcontrib><creatorcontrib>Cannas, Sergio A</creatorcontrib><title>Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRbKn9BYLsoy-ps5fcfCulXqCgiH0O281EVzabmmkq9dcb6QUGzjCccwY-xq4FTIQAdff6uaM33M4nAmACsRQqO2NDqVOIAGJ1ftp1PGBjoi8AEAnkqZCXbKBElgLIeMhwGdwWWzKem1Dy0ITudAjYtb2Uu2BqZ4k3gVNtvOc_TetLbpsQ0G6aGumeT3nlgttgRO4XOVnjXfjoK43fkaMrdlEZTzg-6IgtH-bvs6do8fL4PJsuIqsg3kSlwEzl1ia5ShNR2UxDmqNWQoPRKEsjVZaspEpQGsBMaytibTLdR0SiJagRu933rtvmu0PaFLUji96bgE1HhVQK-tFJ2lvV3mrbhqjFqli3rjbtrhBQ_CMujoj7AxR7xH3q5vCgW9VYnjJHoOoPznl5GQ</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Zarepour, Mahdi</creator><creator>Perotti, Juan I</creator><creator>Billoni, Orlando V</creator><creator>Chialvo, Dante R</creator><creator>Cannas, Sergio A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7331-3532</orcidid></search><sort><creationdate>201911</creationdate><title>Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis</title><author>Zarepour, Mahdi ; Perotti, Juan I ; Billoni, Orlando V ; Chialvo, Dante R ; Cannas, Sergio A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-d1e839cc693761fc84079e43140a4e2da2386b236e2a0e844c154a849cc164203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarepour, Mahdi</creatorcontrib><creatorcontrib>Perotti, Juan I</creatorcontrib><creatorcontrib>Billoni, Orlando V</creatorcontrib><creatorcontrib>Chialvo, Dante R</creatorcontrib><creatorcontrib>Cannas, Sergio A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarepour, Mahdi</au><au>Perotti, Juan I</au><au>Billoni, Orlando V</au><au>Chialvo, Dante R</au><au>Cannas, Sergio A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2019-11</date><risdate>2019</risdate><volume>100</volume><issue>5-1</issue><spage>052138</spage><epage>052138</epage><pages>052138-052138</pages><artnum>052138</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.</abstract><cop>United States</cop><pmid>31870025</pmid><doi>10.1103/PhysRevE.100.052138</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7331-3532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2019-11, Vol.100 (5-1), p.052138-052138, Article 052138
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2330330467
source American Physical Society Journals
title Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20and%20nonuniversal%20neural%20dynamics%20on%20small%20world%20connectomes:%20A%20finite-size%20scaling%20analysis&rft.jtitle=Physical%20review.%20E&rft.au=Zarepour,%20Mahdi&rft.date=2019-11&rft.volume=100&rft.issue=5-1&rft.spage=052138&rft.epage=052138&rft.pages=052138-052138&rft.artnum=052138&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.100.052138&rft_dat=%3Cproquest_cross%3E2330330467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330330467&rft_id=info:pmid/31870025&rfr_iscdi=true