Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis
Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the det...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2019-11, Vol.100 (5-1), p.052138-052138, Article 052138 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 052138 |
---|---|
container_issue | 5-1 |
container_start_page | 052138 |
container_title | Physical review. E |
container_volume | 100 |
creator | Zarepour, Mahdi Perotti, Juan I Billoni, Orlando V Chialvo, Dante R Cannas, Sergio A |
description | Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics. |
doi_str_mv | 10.1103/PhysRevE.100.052138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2330330467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330330467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-d1e839cc693761fc84079e43140a4e2da2386b236e2a0e844c154a849cc164203</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRbKn9BYLsoy-ps5fcfCulXqCgiH0O281EVzabmmkq9dcb6QUGzjCccwY-xq4FTIQAdff6uaM33M4nAmACsRQqO2NDqVOIAGJ1ftp1PGBjoi8AEAnkqZCXbKBElgLIeMhwGdwWWzKem1Dy0ITudAjYtb2Uu2BqZ4k3gVNtvOc_TetLbpsQ0G6aGumeT3nlgttgRO4XOVnjXfjoK43fkaMrdlEZTzg-6IgtH-bvs6do8fL4PJsuIqsg3kSlwEzl1ia5ShNR2UxDmqNWQoPRKEsjVZaspEpQGsBMaytibTLdR0SiJagRu933rtvmu0PaFLUji96bgE1HhVQK-tFJ2lvV3mrbhqjFqli3rjbtrhBQ_CMujoj7AxR7xH3q5vCgW9VYnjJHoOoPznl5GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330330467</pqid></control><display><type>article</type><title>Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis</title><source>American Physical Society Journals</source><creator>Zarepour, Mahdi ; Perotti, Juan I ; Billoni, Orlando V ; Chialvo, Dante R ; Cannas, Sergio A</creator><creatorcontrib>Zarepour, Mahdi ; Perotti, Juan I ; Billoni, Orlando V ; Chialvo, Dante R ; Cannas, Sergio A</creatorcontrib><description>Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.100.052138</identifier><identifier>PMID: 31870025</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2019-11, Vol.100 (5-1), p.052138-052138, Article 052138</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-d1e839cc693761fc84079e43140a4e2da2386b236e2a0e844c154a849cc164203</citedby><cites>FETCH-LOGICAL-c305t-d1e839cc693761fc84079e43140a4e2da2386b236e2a0e844c154a849cc164203</cites><orcidid>0000-0001-7331-3532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31870025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarepour, Mahdi</creatorcontrib><creatorcontrib>Perotti, Juan I</creatorcontrib><creatorcontrib>Billoni, Orlando V</creatorcontrib><creatorcontrib>Chialvo, Dante R</creatorcontrib><creatorcontrib>Cannas, Sergio A</creatorcontrib><title>Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRbKn9BYLsoy-ps5fcfCulXqCgiH0O281EVzabmmkq9dcb6QUGzjCccwY-xq4FTIQAdff6uaM33M4nAmACsRQqO2NDqVOIAGJ1ftp1PGBjoi8AEAnkqZCXbKBElgLIeMhwGdwWWzKem1Dy0ITudAjYtb2Uu2BqZ4k3gVNtvOc_TetLbpsQ0G6aGumeT3nlgttgRO4XOVnjXfjoK43fkaMrdlEZTzg-6IgtH-bvs6do8fL4PJsuIqsg3kSlwEzl1ia5ShNR2UxDmqNWQoPRKEsjVZaspEpQGsBMaytibTLdR0SiJagRu933rtvmu0PaFLUji96bgE1HhVQK-tFJ2lvV3mrbhqjFqli3rjbtrhBQ_CMujoj7AxR7xH3q5vCgW9VYnjJHoOoPznl5GQ</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Zarepour, Mahdi</creator><creator>Perotti, Juan I</creator><creator>Billoni, Orlando V</creator><creator>Chialvo, Dante R</creator><creator>Cannas, Sergio A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7331-3532</orcidid></search><sort><creationdate>201911</creationdate><title>Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis</title><author>Zarepour, Mahdi ; Perotti, Juan I ; Billoni, Orlando V ; Chialvo, Dante R ; Cannas, Sergio A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-d1e839cc693761fc84079e43140a4e2da2386b236e2a0e844c154a849cc164203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarepour, Mahdi</creatorcontrib><creatorcontrib>Perotti, Juan I</creatorcontrib><creatorcontrib>Billoni, Orlando V</creatorcontrib><creatorcontrib>Chialvo, Dante R</creatorcontrib><creatorcontrib>Cannas, Sergio A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarepour, Mahdi</au><au>Perotti, Juan I</au><au>Billoni, Orlando V</au><au>Chialvo, Dante R</au><au>Cannas, Sergio A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2019-11</date><risdate>2019</risdate><volume>100</volume><issue>5-1</issue><spage>052138</spage><epage>052138</epage><pages>052138-052138</pages><artnum>052138</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Evidence of critical dynamics has been found recently in both experiments and models of large-scale brain dynamics. The understanding of the nature and features of such a critical regime is hampered by the relatively small size of the available connectome, which prevents, among other things, the determination of its associated universality class. To circumvent that, here we study a neural model defined on a class of small-world networks that share some topological features with the human connectome. We find that varying the topological parameters can give rise to a scale-invariant behavior either belonging to the mean-field percolation universality class or having nonuniversal critical exponents. In addition, we find certain regions of the topological parameter space where the system presents a discontinuous, i.e., noncritical, dynamical phase transition into a percolated state. Overall, these results shed light on the interplay of dynamical and topological roots of the complex brain dynamics.</abstract><cop>United States</cop><pmid>31870025</pmid><doi>10.1103/PhysRevE.100.052138</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7331-3532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2019-11, Vol.100 (5-1), p.052138-052138, Article 052138 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2330330467 |
source | American Physical Society Journals |
title | Universal and nonuniversal neural dynamics on small world connectomes: A finite-size scaling analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20and%20nonuniversal%20neural%20dynamics%20on%20small%20world%20connectomes:%20A%20finite-size%20scaling%20analysis&rft.jtitle=Physical%20review.%20E&rft.au=Zarepour,%20Mahdi&rft.date=2019-11&rft.volume=100&rft.issue=5-1&rft.spage=052138&rft.epage=052138&rft.pages=052138-052138&rft.artnum=052138&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.100.052138&rft_dat=%3Cproquest_cross%3E2330330467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330330467&rft_id=info:pmid/31870025&rfr_iscdi=true |