Early-warning signals using dynamical network markers selected by covariance

It is an important issue, particularly in the context of sustainable society, to predict critical transitions across which a system state abruptly shifts toward a contrasting state. In this study, we propose an indicator of critical transitions in multivariate dynamical systems, based on the concept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2019-11, Vol.100 (5-1), p.052303-052303, Article 052303
Hauptverfasser: Matsumori, Tadayoshi, Sakai, Hiroyuki, Aihara, Kazuyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 052303
container_issue 5-1
container_start_page 052303
container_title Physical review. E
container_volume 100
creator Matsumori, Tadayoshi
Sakai, Hiroyuki
Aihara, Kazuyuki
description It is an important issue, particularly in the context of sustainable society, to predict critical transitions across which a system state abruptly shifts toward a contrasting state. In this study, we propose an indicator of critical transitions in multivariate dynamical systems, based on the concept of the dynamical network marker (DNM). The DNM is originally defined based on the eigendecomposition of the Jacobian matrix of a nonlinear system and corresponds to large-magnitude components of the dominant eigenvector, which contributes primarily to transitions. Our DNM-based indicator is derived from the sample covariance matrix of state variables in a target system. Simulation results to predict transitions in complex network systems consisting of a harvesting model consistently show the superiority of our indicator as a precursor of transitions regardless of network structure characteristics, as compared to a conventional indicator.
doi_str_mv 10.1103/PhysRevE.100.052303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2330330443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330330443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-2aeaa89dd8059af1ccc7e98d7cab49b6e4aac28f04af1d6f3dfc4275a823a5773</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhhdRrNQ-gSC59CZ19pBucimlHqCgiF6Hye6kxuZQd5OWvL0pPVzN6f9nmI-xOw5TzkE-fvz0_pO2iykHmEIkJMgLdiOUhhAgkpfnXEUjNvH-FwD4DBLNxTUbSR5rAKlv2HKBruzDHbq6qFeBL1Y1lj7o_L6yfY1VYbAMamp3jVsHFbo1OR94Ksm0ZIOsD0yzRVdgbeiWXeWDmybHOGbfz4uv-Wu4fH95mz8tQyM1b0OBhBgn1sYQJZhzY4ymJLbaYKaSbEYK0Yg4BzUM7SyXNjdK6AhjITHSWo7Zw2HvxjV_Hfk2rQpvqCyxpqbzqZADDglKyUEqD1LjGu8d5enGFcMXfcoh3ZNMTySHBqQHkoPr_nigyyqyZ8-Jm_wH8-VyGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330330443</pqid></control><display><type>article</type><title>Early-warning signals using dynamical network markers selected by covariance</title><source>American Physical Society Journals</source><creator>Matsumori, Tadayoshi ; Sakai, Hiroyuki ; Aihara, Kazuyuki</creator><creatorcontrib>Matsumori, Tadayoshi ; Sakai, Hiroyuki ; Aihara, Kazuyuki</creatorcontrib><description>It is an important issue, particularly in the context of sustainable society, to predict critical transitions across which a system state abruptly shifts toward a contrasting state. In this study, we propose an indicator of critical transitions in multivariate dynamical systems, based on the concept of the dynamical network marker (DNM). The DNM is originally defined based on the eigendecomposition of the Jacobian matrix of a nonlinear system and corresponds to large-magnitude components of the dominant eigenvector, which contributes primarily to transitions. Our DNM-based indicator is derived from the sample covariance matrix of state variables in a target system. Simulation results to predict transitions in complex network systems consisting of a harvesting model consistently show the superiority of our indicator as a precursor of transitions regardless of network structure characteristics, as compared to a conventional indicator.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.100.052303</identifier><identifier>PMID: 31870037</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2019-11, Vol.100 (5-1), p.052303-052303, Article 052303</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-2aeaa89dd8059af1ccc7e98d7cab49b6e4aac28f04af1d6f3dfc4275a823a5773</citedby><cites>FETCH-LOGICAL-c371t-2aeaa89dd8059af1ccc7e98d7cab49b6e4aac28f04af1d6f3dfc4275a823a5773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31870037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsumori, Tadayoshi</creatorcontrib><creatorcontrib>Sakai, Hiroyuki</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><title>Early-warning signals using dynamical network markers selected by covariance</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>It is an important issue, particularly in the context of sustainable society, to predict critical transitions across which a system state abruptly shifts toward a contrasting state. In this study, we propose an indicator of critical transitions in multivariate dynamical systems, based on the concept of the dynamical network marker (DNM). The DNM is originally defined based on the eigendecomposition of the Jacobian matrix of a nonlinear system and corresponds to large-magnitude components of the dominant eigenvector, which contributes primarily to transitions. Our DNM-based indicator is derived from the sample covariance matrix of state variables in a target system. Simulation results to predict transitions in complex network systems consisting of a harvesting model consistently show the superiority of our indicator as a precursor of transitions regardless of network structure characteristics, as compared to a conventional indicator.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKw0AQhhdRrNQ-gSC59CZ19pBucimlHqCgiF6Hye6kxuZQd5OWvL0pPVzN6f9nmI-xOw5TzkE-fvz0_pO2iykHmEIkJMgLdiOUhhAgkpfnXEUjNvH-FwD4DBLNxTUbSR5rAKlv2HKBruzDHbq6qFeBL1Y1lj7o_L6yfY1VYbAMamp3jVsHFbo1OR94Ksm0ZIOsD0yzRVdgbeiWXeWDmybHOGbfz4uv-Wu4fH95mz8tQyM1b0OBhBgn1sYQJZhzY4ymJLbaYKaSbEYK0Yg4BzUM7SyXNjdK6AhjITHSWo7Zw2HvxjV_Hfk2rQpvqCyxpqbzqZADDglKyUEqD1LjGu8d5enGFcMXfcoh3ZNMTySHBqQHkoPr_nigyyqyZ8-Jm_wH8-VyGQ</recordid><startdate>20191112</startdate><enddate>20191112</enddate><creator>Matsumori, Tadayoshi</creator><creator>Sakai, Hiroyuki</creator><creator>Aihara, Kazuyuki</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20191112</creationdate><title>Early-warning signals using dynamical network markers selected by covariance</title><author>Matsumori, Tadayoshi ; Sakai, Hiroyuki ; Aihara, Kazuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-2aeaa89dd8059af1ccc7e98d7cab49b6e4aac28f04af1d6f3dfc4275a823a5773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumori, Tadayoshi</creatorcontrib><creatorcontrib>Sakai, Hiroyuki</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumori, Tadayoshi</au><au>Sakai, Hiroyuki</au><au>Aihara, Kazuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early-warning signals using dynamical network markers selected by covariance</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2019-11-12</date><risdate>2019</risdate><volume>100</volume><issue>5-1</issue><spage>052303</spage><epage>052303</epage><pages>052303-052303</pages><artnum>052303</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>It is an important issue, particularly in the context of sustainable society, to predict critical transitions across which a system state abruptly shifts toward a contrasting state. In this study, we propose an indicator of critical transitions in multivariate dynamical systems, based on the concept of the dynamical network marker (DNM). The DNM is originally defined based on the eigendecomposition of the Jacobian matrix of a nonlinear system and corresponds to large-magnitude components of the dominant eigenvector, which contributes primarily to transitions. Our DNM-based indicator is derived from the sample covariance matrix of state variables in a target system. Simulation results to predict transitions in complex network systems consisting of a harvesting model consistently show the superiority of our indicator as a precursor of transitions regardless of network structure characteristics, as compared to a conventional indicator.</abstract><cop>United States</cop><pmid>31870037</pmid><doi>10.1103/PhysRevE.100.052303</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2019-11, Vol.100 (5-1), p.052303-052303, Article 052303
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2330330443
source American Physical Society Journals
title Early-warning signals using dynamical network markers selected by covariance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early-warning%20signals%20using%20dynamical%20network%20markers%20selected%20by%20covariance&rft.jtitle=Physical%20review.%20E&rft.au=Matsumori,%20Tadayoshi&rft.date=2019-11-12&rft.volume=100&rft.issue=5-1&rft.spage=052303&rft.epage=052303&rft.pages=052303-052303&rft.artnum=052303&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.100.052303&rft_dat=%3Cproquest_cross%3E2330330443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2330330443&rft_id=info:pmid/31870037&rfr_iscdi=true