Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline
We conducted a large-scale genome-wide association study evaluation of 683 common bean accessions, including landraces and breeding lines, grown over 3 years and in four environments across China, ranging in latitude from 18.23° to 45.75° N, with different planting dates and abiotic or biotic stress...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2020-01, Vol.52 (1), p.118-125 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 1 |
container_start_page | 118 |
container_title | Nature genetics |
container_volume | 52 |
creator | Wu, Jing Wang, Lanfen Fu, Junjie Chen, Jibao Wei, Shuhong Zhang, Shilong Zhang, Jie Tang, Yongsheng Chen, Mingli Zhu, Jifeng Lei, Lei Geng, Qinghe Liu, Chunliang Wu, Lei Li, Xiaoming Wang, Xiaoli Wang, Qiang Wang, Zhaoli Xing, Shilai Zhang, Haikuan Blair, Matthew W. Wang, Shumin |
description | We conducted a large-scale genome-wide association study evaluation of 683 common bean accessions, including landraces and breeding lines, grown over 3 years and in four environments across China, ranging in latitude from 18.23° to 45.75° N, with different planting dates and abiotic or biotic stresses. A total of 505 loci were associated with yield components, of which seed size, flowering time and harvest maturity traits were stable across years and environments. Some loci aligned with candidate genes controlling these traits. Yield components were observed to have strong associations with a gene-rich region on the long arm of chromosome 1. Manipulation of seed size, through selection of seed length versus seed width and height, was deemed possible, providing a genome-based means to select for important yield components. This study shows that evaluation of large germplasm collections across north–south geographic clines is useful in the detection of marker associations that determine grain yield in pulses.
Resequencing and genome-wide association analysis of 683 common bean accessions across different latitudes identifies 505 loci associated with yield components, of which seed size, flowering and harvest maturity traits are stable across environments. |
doi_str_mv | 10.1038/s41588-019-0546-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2330329391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611371171</galeid><sourcerecordid>A611371171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-2931c351c82f50f1010cee0b66f838055621eb84c364d516ece2538ba2ee44933</originalsourceid><addsrcrecordid>eNqNks1u1TAQhSMEoqXwAGyQJTawSJmJE8dZVhWFSpUqlZ-t5TiT1FViX2JH4u54h74hT4LDLVQXgYS8mNH4m5Hn-GTZc4RjBC7fhBIrKXPAJoeqFDk8yA5xTbBG-TDlIDAvgYuD7EkINwBYliAfZwccZc2LpjnM4hUF-rKQM9YNzPdMSM6MnybvWEvasYGcj9sNBWY7ctH2NqVbS2O3YhvvUpHFWdvIdAjeWB2td4FpM_uQAnN-jtffv90Gv8RrZkbr6Gn2qNdjoGd38Sj7dPb24-n7_OLy3fnpyUVuKqhjXjQcDa_QyKKvoEdAMETQCtFLLqGqRIHUytJwUXYVCjJUVFy2uiAqy4bzo-zVbu5m9mnHENVkg6Fx1I78ElTBOSQZeIMJffkHeuOX2aXXJaqUsqkB4J4a9EjKut6nzc06VJ0IRF5jUj5Rx3-h0ulosiYp1ttU32t4vdeQmEhf46CXENT5h6v_Zy8_77O4Y3_-xUy92sx20vNWIajVQWrnIJUcpFYHqXXFF3dCLO1E3e-OX5ZJQLEDQrpyA833Sv176g-Q_s41</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348897000</pqid></control><display><type>article</type><title>Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Wu, Jing ; Wang, Lanfen ; Fu, Junjie ; Chen, Jibao ; Wei, Shuhong ; Zhang, Shilong ; Zhang, Jie ; Tang, Yongsheng ; Chen, Mingli ; Zhu, Jifeng ; Lei, Lei ; Geng, Qinghe ; Liu, Chunliang ; Wu, Lei ; Li, Xiaoming ; Wang, Xiaoli ; Wang, Qiang ; Wang, Zhaoli ; Xing, Shilai ; Zhang, Haikuan ; Blair, Matthew W. ; Wang, Shumin</creator><creatorcontrib>Wu, Jing ; Wang, Lanfen ; Fu, Junjie ; Chen, Jibao ; Wei, Shuhong ; Zhang, Shilong ; Zhang, Jie ; Tang, Yongsheng ; Chen, Mingli ; Zhu, Jifeng ; Lei, Lei ; Geng, Qinghe ; Liu, Chunliang ; Wu, Lei ; Li, Xiaoming ; Wang, Xiaoli ; Wang, Qiang ; Wang, Zhaoli ; Xing, Shilai ; Zhang, Haikuan ; Blair, Matthew W. ; Wang, Shumin</creatorcontrib><description>We conducted a large-scale genome-wide association study evaluation of 683 common bean accessions, including landraces and breeding lines, grown over 3 years and in four environments across China, ranging in latitude from 18.23° to 45.75° N, with different planting dates and abiotic or biotic stresses. A total of 505 loci were associated with yield components, of which seed size, flowering time and harvest maturity traits were stable across years and environments. Some loci aligned with candidate genes controlling these traits. Yield components were observed to have strong associations with a gene-rich region on the long arm of chromosome 1. Manipulation of seed size, through selection of seed length versus seed width and height, was deemed possible, providing a genome-based means to select for important yield components. This study shows that evaluation of large germplasm collections across north–south geographic clines is useful in the detection of marker associations that determine grain yield in pulses.
Resequencing and genome-wide association analysis of 683 common bean accessions across different latitudes identifies 505 loci associated with yield components, of which seed size, flowering and harvest maturity traits are stable across environments.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-019-0546-0</identifier><identifier>PMID: 31873299</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/205/2138 ; 631/208/514/1948 ; 631/449/2491 ; Agricultural production ; Agriculture ; Analysis ; Animal Genetics and Genomics ; Beans ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Chromosome Mapping ; Chromosomes ; Chromosomes, Plant ; Clines ; Crop yield ; Flowering ; Gene Function ; Genes ; Genetic aspects ; Genetic diversity ; Genetics, Population ; Genome, Plant ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomics ; Genotype ; Genotype & phenotype ; Genotypes ; Germplasm ; Human Genetics ; Kinases ; Loci ; Phaseolus - genetics ; Phaseolus - growth & development ; Phenotype ; Plant breeding ; Planting date ; Polymorphism, Single Nucleotide ; Principal components analysis ; Proteins ; Quantitative Trait Loci ; Sequence Analysis, DNA ; Sorghum ; Soybeans</subject><ispartof>Nature genetics, 2020-01, Vol.52 (1), p.118-125</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-2931c351c82f50f1010cee0b66f838055621eb84c364d516ece2538ba2ee44933</citedby><cites>FETCH-LOGICAL-c507t-2931c351c82f50f1010cee0b66f838055621eb84c364d516ece2538ba2ee44933</cites><orcidid>0000-0002-0869-1120 ; 0000-0001-9907-8630 ; 0000-0003-1187-2237 ; 0000-0003-3655-3726 ; 0000-0003-1593-1409 ; 0000-0002-4702-2392 ; 0000-0001-7240-6024 ; 0000-0003-3798-6048 ; 0000-0002-6086-8261 ; 0000-0002-0169-1814 ; 0000-0003-3304-1733 ; 0000-0001-9825-6941 ; 0000-0002-7125-6949 ; 0000-0002-4656-822X ; 0000-0001-7951-5741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-019-0546-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-019-0546-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Wang, Lanfen</creatorcontrib><creatorcontrib>Fu, Junjie</creatorcontrib><creatorcontrib>Chen, Jibao</creatorcontrib><creatorcontrib>Wei, Shuhong</creatorcontrib><creatorcontrib>Zhang, Shilong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Tang, Yongsheng</creatorcontrib><creatorcontrib>Chen, Mingli</creatorcontrib><creatorcontrib>Zhu, Jifeng</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Geng, Qinghe</creatorcontrib><creatorcontrib>Liu, Chunliang</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Li, Xiaoming</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Wang, Zhaoli</creatorcontrib><creatorcontrib>Xing, Shilai</creatorcontrib><creatorcontrib>Zhang, Haikuan</creatorcontrib><creatorcontrib>Blair, Matthew W.</creatorcontrib><creatorcontrib>Wang, Shumin</creatorcontrib><title>Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>We conducted a large-scale genome-wide association study evaluation of 683 common bean accessions, including landraces and breeding lines, grown over 3 years and in four environments across China, ranging in latitude from 18.23° to 45.75° N, with different planting dates and abiotic or biotic stresses. A total of 505 loci were associated with yield components, of which seed size, flowering time and harvest maturity traits were stable across years and environments. Some loci aligned with candidate genes controlling these traits. Yield components were observed to have strong associations with a gene-rich region on the long arm of chromosome 1. Manipulation of seed size, through selection of seed length versus seed width and height, was deemed possible, providing a genome-based means to select for important yield components. This study shows that evaluation of large germplasm collections across north–south geographic clines is useful in the detection of marker associations that determine grain yield in pulses.
Resequencing and genome-wide association analysis of 683 common bean accessions across different latitudes identifies 505 loci associated with yield components, of which seed size, flowering and harvest maturity traits are stable across environments.</description><subject>631/208/205/2138</subject><subject>631/208/514/1948</subject><subject>631/449/2491</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Animal Genetics and Genomics</subject><subject>Beans</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>Clines</subject><subject>Crop yield</subject><subject>Flowering</subject><subject>Gene Function</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetics, Population</subject><subject>Genome, Plant</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Germplasm</subject><subject>Human Genetics</subject><subject>Kinases</subject><subject>Loci</subject><subject>Phaseolus - genetics</subject><subject>Phaseolus - growth & development</subject><subject>Phenotype</subject><subject>Plant breeding</subject><subject>Planting date</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Principal components analysis</subject><subject>Proteins</subject><subject>Quantitative Trait Loci</subject><subject>Sequence Analysis, DNA</subject><subject>Sorghum</subject><subject>Soybeans</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks1u1TAQhSMEoqXwAGyQJTawSJmJE8dZVhWFSpUqlZ-t5TiT1FViX2JH4u54h74hT4LDLVQXgYS8mNH4m5Hn-GTZc4RjBC7fhBIrKXPAJoeqFDk8yA5xTbBG-TDlIDAvgYuD7EkINwBYliAfZwccZc2LpjnM4hUF-rKQM9YNzPdMSM6MnybvWEvasYGcj9sNBWY7ctH2NqVbS2O3YhvvUpHFWdvIdAjeWB2td4FpM_uQAnN-jtffv90Gv8RrZkbr6Gn2qNdjoGd38Sj7dPb24-n7_OLy3fnpyUVuKqhjXjQcDa_QyKKvoEdAMETQCtFLLqGqRIHUytJwUXYVCjJUVFy2uiAqy4bzo-zVbu5m9mnHENVkg6Fx1I78ElTBOSQZeIMJffkHeuOX2aXXJaqUsqkB4J4a9EjKut6nzc06VJ0IRF5jUj5Rx3-h0ulosiYp1ttU32t4vdeQmEhf46CXENT5h6v_Zy8_77O4Y3_-xUy92sx20vNWIajVQWrnIJUcpFYHqXXFF3dCLO1E3e-OX5ZJQLEDQrpyA833Sv176g-Q_s41</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wu, Jing</creator><creator>Wang, Lanfen</creator><creator>Fu, Junjie</creator><creator>Chen, Jibao</creator><creator>Wei, Shuhong</creator><creator>Zhang, Shilong</creator><creator>Zhang, Jie</creator><creator>Tang, Yongsheng</creator><creator>Chen, Mingli</creator><creator>Zhu, Jifeng</creator><creator>Lei, Lei</creator><creator>Geng, Qinghe</creator><creator>Liu, Chunliang</creator><creator>Wu, Lei</creator><creator>Li, Xiaoming</creator><creator>Wang, Xiaoli</creator><creator>Wang, Qiang</creator><creator>Wang, Zhaoli</creator><creator>Xing, Shilai</creator><creator>Zhang, Haikuan</creator><creator>Blair, Matthew W.</creator><creator>Wang, Shumin</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0869-1120</orcidid><orcidid>https://orcid.org/0000-0001-9907-8630</orcidid><orcidid>https://orcid.org/0000-0003-1187-2237</orcidid><orcidid>https://orcid.org/0000-0003-3655-3726</orcidid><orcidid>https://orcid.org/0000-0003-1593-1409</orcidid><orcidid>https://orcid.org/0000-0002-4702-2392</orcidid><orcidid>https://orcid.org/0000-0001-7240-6024</orcidid><orcidid>https://orcid.org/0000-0003-3798-6048</orcidid><orcidid>https://orcid.org/0000-0002-6086-8261</orcidid><orcidid>https://orcid.org/0000-0002-0169-1814</orcidid><orcidid>https://orcid.org/0000-0003-3304-1733</orcidid><orcidid>https://orcid.org/0000-0001-9825-6941</orcidid><orcidid>https://orcid.org/0000-0002-7125-6949</orcidid><orcidid>https://orcid.org/0000-0002-4656-822X</orcidid><orcidid>https://orcid.org/0000-0001-7951-5741</orcidid></search><sort><creationdate>20200101</creationdate><title>Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline</title><author>Wu, Jing ; Wang, Lanfen ; Fu, Junjie ; Chen, Jibao ; Wei, Shuhong ; Zhang, Shilong ; Zhang, Jie ; Tang, Yongsheng ; Chen, Mingli ; Zhu, Jifeng ; Lei, Lei ; Geng, Qinghe ; Liu, Chunliang ; Wu, Lei ; Li, Xiaoming ; Wang, Xiaoli ; Wang, Qiang ; Wang, Zhaoli ; Xing, Shilai ; Zhang, Haikuan ; Blair, Matthew W. ; Wang, Shumin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-2931c351c82f50f1010cee0b66f838055621eb84c364d516ece2538ba2ee44933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/208/205/2138</topic><topic>631/208/514/1948</topic><topic>631/449/2491</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Animal Genetics and Genomics</topic><topic>Beans</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>Clines</topic><topic>Crop yield</topic><topic>Flowering</topic><topic>Gene Function</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetics, Population</topic><topic>Genome, Plant</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Germplasm</topic><topic>Human Genetics</topic><topic>Kinases</topic><topic>Loci</topic><topic>Phaseolus - genetics</topic><topic>Phaseolus - growth & development</topic><topic>Phenotype</topic><topic>Plant breeding</topic><topic>Planting date</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Principal components analysis</topic><topic>Proteins</topic><topic>Quantitative Trait Loci</topic><topic>Sequence Analysis, DNA</topic><topic>Sorghum</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Wang, Lanfen</creatorcontrib><creatorcontrib>Fu, Junjie</creatorcontrib><creatorcontrib>Chen, Jibao</creatorcontrib><creatorcontrib>Wei, Shuhong</creatorcontrib><creatorcontrib>Zhang, Shilong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Tang, Yongsheng</creatorcontrib><creatorcontrib>Chen, Mingli</creatorcontrib><creatorcontrib>Zhu, Jifeng</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Geng, Qinghe</creatorcontrib><creatorcontrib>Liu, Chunliang</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Li, Xiaoming</creatorcontrib><creatorcontrib>Wang, Xiaoli</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Wang, Zhaoli</creatorcontrib><creatorcontrib>Xing, Shilai</creatorcontrib><creatorcontrib>Zhang, Haikuan</creatorcontrib><creatorcontrib>Blair, Matthew W.</creatorcontrib><creatorcontrib>Wang, Shumin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jing</au><au>Wang, Lanfen</au><au>Fu, Junjie</au><au>Chen, Jibao</au><au>Wei, Shuhong</au><au>Zhang, Shilong</au><au>Zhang, Jie</au><au>Tang, Yongsheng</au><au>Chen, Mingli</au><au>Zhu, Jifeng</au><au>Lei, Lei</au><au>Geng, Qinghe</au><au>Liu, Chunliang</au><au>Wu, Lei</au><au>Li, Xiaoming</au><au>Wang, Xiaoli</au><au>Wang, Qiang</au><au>Wang, Zhaoli</au><au>Xing, Shilai</au><au>Zhang, Haikuan</au><au>Blair, Matthew W.</au><au>Wang, Shumin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>52</volume><issue>1</issue><spage>118</spage><epage>125</epage><pages>118-125</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>We conducted a large-scale genome-wide association study evaluation of 683 common bean accessions, including landraces and breeding lines, grown over 3 years and in four environments across China, ranging in latitude from 18.23° to 45.75° N, with different planting dates and abiotic or biotic stresses. A total of 505 loci were associated with yield components, of which seed size, flowering time and harvest maturity traits were stable across years and environments. Some loci aligned with candidate genes controlling these traits. Yield components were observed to have strong associations with a gene-rich region on the long arm of chromosome 1. Manipulation of seed size, through selection of seed length versus seed width and height, was deemed possible, providing a genome-based means to select for important yield components. This study shows that evaluation of large germplasm collections across north–south geographic clines is useful in the detection of marker associations that determine grain yield in pulses.
Resequencing and genome-wide association analysis of 683 common bean accessions across different latitudes identifies 505 loci associated with yield components, of which seed size, flowering and harvest maturity traits are stable across environments.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31873299</pmid><doi>10.1038/s41588-019-0546-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0869-1120</orcidid><orcidid>https://orcid.org/0000-0001-9907-8630</orcidid><orcidid>https://orcid.org/0000-0003-1187-2237</orcidid><orcidid>https://orcid.org/0000-0003-3655-3726</orcidid><orcidid>https://orcid.org/0000-0003-1593-1409</orcidid><orcidid>https://orcid.org/0000-0002-4702-2392</orcidid><orcidid>https://orcid.org/0000-0001-7240-6024</orcidid><orcidid>https://orcid.org/0000-0003-3798-6048</orcidid><orcidid>https://orcid.org/0000-0002-6086-8261</orcidid><orcidid>https://orcid.org/0000-0002-0169-1814</orcidid><orcidid>https://orcid.org/0000-0003-3304-1733</orcidid><orcidid>https://orcid.org/0000-0001-9825-6941</orcidid><orcidid>https://orcid.org/0000-0002-7125-6949</orcidid><orcidid>https://orcid.org/0000-0002-4656-822X</orcidid><orcidid>https://orcid.org/0000-0001-7951-5741</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2020-01, Vol.52 (1), p.118-125 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_2330329391 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/208/205/2138 631/208/514/1948 631/449/2491 Agricultural production Agriculture Analysis Animal Genetics and Genomics Beans Biomedical and Life Sciences Biomedicine Cancer Research Chromosome Mapping Chromosomes Chromosomes, Plant Clines Crop yield Flowering Gene Function Genes Genetic aspects Genetic diversity Genetics, Population Genome, Plant Genome-wide association studies Genome-Wide Association Study Genomes Genomics Genotype Genotype & phenotype Genotypes Germplasm Human Genetics Kinases Loci Phaseolus - genetics Phaseolus - growth & development Phenotype Plant breeding Planting date Polymorphism, Single Nucleotide Principal components analysis Proteins Quantitative Trait Loci Sequence Analysis, DNA Sorghum Soybeans |
title | Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resequencing%20of%20683%20common%20bean%20genotypes%20identifies%20yield%20component%20trait%20associations%20across%20a%20north%E2%80%93south%20cline&rft.jtitle=Nature%20genetics&rft.au=Wu,%20Jing&rft.date=2020-01-01&rft.volume=52&rft.issue=1&rft.spage=118&rft.epage=125&rft.pages=118-125&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-019-0546-0&rft_dat=%3Cgale_proqu%3EA611371171%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348897000&rft_id=info:pmid/31873299&rft_galeid=A611371171&rfr_iscdi=true |