Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study

Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental gerontology 2020-03, Vol.131, p.110816-110816, Article 110816
Hauptverfasser: de Oliveira Silva, Felipe, Ferreira, José Vinícius, Plácido, Jéssica, Chagas, Daniel, Praxedes, Jomilto, Guimarães, Carla, Batista, Luiz Alberto, Laks, Jerson, Deslandes, Andrea Camaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110816
container_issue
container_start_page 110816
container_title Experimental gerontology
container_volume 131
creator de Oliveira Silva, Felipe
Ferreira, José Vinícius
Plácido, Jéssica
Chagas, Daniel
Praxedes, Jomilto
Guimarães, Carla
Batista, Luiz Alberto
Laks, Jerson
Deslandes, Andrea Camaz
description Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments.
doi_str_mv 10.1016/j.exger.2019.110816
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2329734469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0531556519304498</els_id><sourcerecordid>2329734469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-61c324da0fbd43de30d5111b9b061c3fbad7eaad6ea62907ee3b52afdeaeebbc3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EomnhCZCQb_TQTe31rpNF4hBVpSBV4lLO1qw9m0zk3Q22E7o8BY-M0xSOnOYwv--bPx9j76SYSyH19XaOj2sM81LIZi6lWEr9gs3kcqEKvZT1SzYTtZJFXev6jJ3HuBVC6FLJ1-xMyaUuq1LO2O87oMRhAD9FivwnpQ0_kMNxHaDvMYWJWxi4o67DgEMiSMg3CD5tJo7eYfDTFe_JO27H9UCJDsip3wGFPuNX2drxlf-1QeoxfIjZKSJE_MhX3IYxxiKiTTTmBXhMeze9Ya868BHfPtcL9v3z7cPNl-L-293Xm9V9YVXdpEJLq8rKgehaVymHSrhaStk2rTi2uhbcAgGcRtBlIxaIqq1L6BwCYttadcEuT767MP7YY0ymp2jRexhw3EdTqrJZqKrSTUbVCX1aOGBndoF6CJORwhyjMFvzFIU5RmFOUWTV--cB-7ZH90_z9_cZ-HQCMJ95oCyPlnCw6Cjknxg30n8H_AHyaJ__</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329734469</pqid></control><display><type>article</type><title>Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>de Oliveira Silva, Felipe ; Ferreira, José Vinícius ; Plácido, Jéssica ; Chagas, Daniel ; Praxedes, Jomilto ; Guimarães, Carla ; Batista, Luiz Alberto ; Laks, Jerson ; Deslandes, Andrea Camaz</creator><creatorcontrib>de Oliveira Silva, Felipe ; Ferreira, José Vinícius ; Plácido, Jéssica ; Chagas, Daniel ; Praxedes, Jomilto ; Guimarães, Carla ; Batista, Luiz Alberto ; Laks, Jerson ; Deslandes, Andrea Camaz</creatorcontrib><description>Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments.</description><identifier>ISSN: 0531-5565</identifier><identifier>EISSN: 1873-6815</identifier><identifier>DOI: 10.1016/j.exger.2019.110816</identifier><identifier>PMID: 31862421</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Accidental Falls ; Aged ; Aged, 80 and over ; Alzheimer Disease - physiopathology ; Alzheimer's disease ; Cognitive Dysfunction - physiopathology ; Cross-Sectional Studies ; Diagnosis, Differential ; Dual-task ; Female ; Gait ; Gait Analysis - methods ; Humans ; Male ; Middle Aged ; Mild cognitive impairment ; Mobility ; Neuropsychological Tests ; Time and Motion Studies ; Velocity ; Video Recording - methods ; Walk Test - methods</subject><ispartof>Experimental gerontology, 2020-03, Vol.131, p.110816-110816, Article 110816</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-61c324da0fbd43de30d5111b9b061c3fbad7eaad6ea62907ee3b52afdeaeebbc3</citedby><cites>FETCH-LOGICAL-c359t-61c324da0fbd43de30d5111b9b061c3fbad7eaad6ea62907ee3b52afdeaeebbc3</cites><orcidid>0000-0002-1457-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0531556519304498$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31862421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira Silva, Felipe</creatorcontrib><creatorcontrib>Ferreira, José Vinícius</creatorcontrib><creatorcontrib>Plácido, Jéssica</creatorcontrib><creatorcontrib>Chagas, Daniel</creatorcontrib><creatorcontrib>Praxedes, Jomilto</creatorcontrib><creatorcontrib>Guimarães, Carla</creatorcontrib><creatorcontrib>Batista, Luiz Alberto</creatorcontrib><creatorcontrib>Laks, Jerson</creatorcontrib><creatorcontrib>Deslandes, Andrea Camaz</creatorcontrib><title>Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study</title><title>Experimental gerontology</title><addtitle>Exp Gerontol</addtitle><description>Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments.</description><subject>Accidental Falls</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Alzheimer's disease</subject><subject>Cognitive Dysfunction - physiopathology</subject><subject>Cross-Sectional Studies</subject><subject>Diagnosis, Differential</subject><subject>Dual-task</subject><subject>Female</subject><subject>Gait</subject><subject>Gait Analysis - methods</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mild cognitive impairment</subject><subject>Mobility</subject><subject>Neuropsychological Tests</subject><subject>Time and Motion Studies</subject><subject>Velocity</subject><subject>Video Recording - methods</subject><subject>Walk Test - methods</subject><issn>0531-5565</issn><issn>1873-6815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQxi0EomnhCZCQb_TQTe31rpNF4hBVpSBV4lLO1qw9m0zk3Q22E7o8BY-M0xSOnOYwv--bPx9j76SYSyH19XaOj2sM81LIZi6lWEr9gs3kcqEKvZT1SzYTtZJFXev6jJ3HuBVC6FLJ1-xMyaUuq1LO2O87oMRhAD9FivwnpQ0_kMNxHaDvMYWJWxi4o67DgEMiSMg3CD5tJo7eYfDTFe_JO27H9UCJDsip3wGFPuNX2drxlf-1QeoxfIjZKSJE_MhX3IYxxiKiTTTmBXhMeze9Ya868BHfPtcL9v3z7cPNl-L-293Xm9V9YVXdpEJLq8rKgehaVymHSrhaStk2rTi2uhbcAgGcRtBlIxaIqq1L6BwCYttadcEuT767MP7YY0ymp2jRexhw3EdTqrJZqKrSTUbVCX1aOGBndoF6CJORwhyjMFvzFIU5RmFOUWTV--cB-7ZH90_z9_cZ-HQCMJ95oCyPlnCw6Cjknxg30n8H_AHyaJ__</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>de Oliveira Silva, Felipe</creator><creator>Ferreira, José Vinícius</creator><creator>Plácido, Jéssica</creator><creator>Chagas, Daniel</creator><creator>Praxedes, Jomilto</creator><creator>Guimarães, Carla</creator><creator>Batista, Luiz Alberto</creator><creator>Laks, Jerson</creator><creator>Deslandes, Andrea Camaz</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1457-0480</orcidid></search><sort><creationdate>202003</creationdate><title>Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study</title><author>de Oliveira Silva, Felipe ; Ferreira, José Vinícius ; Plácido, Jéssica ; Chagas, Daniel ; Praxedes, Jomilto ; Guimarães, Carla ; Batista, Luiz Alberto ; Laks, Jerson ; Deslandes, Andrea Camaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-61c324da0fbd43de30d5111b9b061c3fbad7eaad6ea62907ee3b52afdeaeebbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidental Falls</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Alzheimer's disease</topic><topic>Cognitive Dysfunction - physiopathology</topic><topic>Cross-Sectional Studies</topic><topic>Diagnosis, Differential</topic><topic>Dual-task</topic><topic>Female</topic><topic>Gait</topic><topic>Gait Analysis - methods</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mild cognitive impairment</topic><topic>Mobility</topic><topic>Neuropsychological Tests</topic><topic>Time and Motion Studies</topic><topic>Velocity</topic><topic>Video Recording - methods</topic><topic>Walk Test - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira Silva, Felipe</creatorcontrib><creatorcontrib>Ferreira, José Vinícius</creatorcontrib><creatorcontrib>Plácido, Jéssica</creatorcontrib><creatorcontrib>Chagas, Daniel</creatorcontrib><creatorcontrib>Praxedes, Jomilto</creatorcontrib><creatorcontrib>Guimarães, Carla</creatorcontrib><creatorcontrib>Batista, Luiz Alberto</creatorcontrib><creatorcontrib>Laks, Jerson</creatorcontrib><creatorcontrib>Deslandes, Andrea Camaz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental gerontology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira Silva, Felipe</au><au>Ferreira, José Vinícius</au><au>Plácido, Jéssica</au><au>Chagas, Daniel</au><au>Praxedes, Jomilto</au><au>Guimarães, Carla</au><au>Batista, Luiz Alberto</au><au>Laks, Jerson</au><au>Deslandes, Andrea Camaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study</atitle><jtitle>Experimental gerontology</jtitle><addtitle>Exp Gerontol</addtitle><date>2020-03</date><risdate>2020</risdate><volume>131</volume><spage>110816</spage><epage>110816</epage><pages>110816-110816</pages><artnum>110816</artnum><issn>0531-5565</issn><eissn>1873-6815</eissn><abstract>Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>31862421</pmid><doi>10.1016/j.exger.2019.110816</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1457-0480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0531-5565
ispartof Experimental gerontology, 2020-03, Vol.131, p.110816-110816, Article 110816
issn 0531-5565
1873-6815
language eng
recordid cdi_proquest_miscellaneous_2329734469
source MEDLINE; Elsevier ScienceDirect Journals
subjects Accidental Falls
Aged
Aged, 80 and over
Alzheimer Disease - physiopathology
Alzheimer's disease
Cognitive Dysfunction - physiopathology
Cross-Sectional Studies
Diagnosis, Differential
Dual-task
Female
Gait
Gait Analysis - methods
Humans
Male
Middle Aged
Mild cognitive impairment
Mobility
Neuropsychological Tests
Time and Motion Studies
Velocity
Video Recording - methods
Walk Test - methods
title Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gait%20analysis%20with%20videogrammetry%20can%20differentiate%20healthy%20elderly,%20mild%20cognitive%20impairment,%20and%20Alzheimer's%20disease:%20A%20cross-sectional%20study&rft.jtitle=Experimental%20gerontology&rft.au=de%20Oliveira%20Silva,%20Felipe&rft.date=2020-03&rft.volume=131&rft.spage=110816&rft.epage=110816&rft.pages=110816-110816&rft.artnum=110816&rft.issn=0531-5565&rft.eissn=1873-6815&rft_id=info:doi/10.1016/j.exger.2019.110816&rft_dat=%3Cproquest_cross%3E2329734469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329734469&rft_id=info:pmid/31862421&rft_els_id=S0531556519304498&rfr_iscdi=true