Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study
Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and...
Gespeichert in:
Veröffentlicht in: | Experimental gerontology 2020-03, Vol.131, p.110816-110816, Article 110816 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110816 |
---|---|
container_issue | |
container_start_page | 110816 |
container_title | Experimental gerontology |
container_volume | 131 |
creator | de Oliveira Silva, Felipe Ferreira, José Vinícius Plácido, Jéssica Chagas, Daniel Praxedes, Jomilto Guimarães, Carla Batista, Luiz Alberto Laks, Jerson Deslandes, Andrea Camaz |
description | Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments. |
doi_str_mv | 10.1016/j.exger.2019.110816 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2329734469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0531556519304498</els_id><sourcerecordid>2329734469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-61c324da0fbd43de30d5111b9b061c3fbad7eaad6ea62907ee3b52afdeaeebbc3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EomnhCZCQb_TQTe31rpNF4hBVpSBV4lLO1qw9m0zk3Q22E7o8BY-M0xSOnOYwv--bPx9j76SYSyH19XaOj2sM81LIZi6lWEr9gs3kcqEKvZT1SzYTtZJFXev6jJ3HuBVC6FLJ1-xMyaUuq1LO2O87oMRhAD9FivwnpQ0_kMNxHaDvMYWJWxi4o67DgEMiSMg3CD5tJo7eYfDTFe_JO27H9UCJDsip3wGFPuNX2drxlf-1QeoxfIjZKSJE_MhX3IYxxiKiTTTmBXhMeze9Ya868BHfPtcL9v3z7cPNl-L-293Xm9V9YVXdpEJLq8rKgehaVymHSrhaStk2rTi2uhbcAgGcRtBlIxaIqq1L6BwCYttadcEuT767MP7YY0ymp2jRexhw3EdTqrJZqKrSTUbVCX1aOGBndoF6CJORwhyjMFvzFIU5RmFOUWTV--cB-7ZH90_z9_cZ-HQCMJ95oCyPlnCw6Cjknxg30n8H_AHyaJ__</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329734469</pqid></control><display><type>article</type><title>Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>de Oliveira Silva, Felipe ; Ferreira, José Vinícius ; Plácido, Jéssica ; Chagas, Daniel ; Praxedes, Jomilto ; Guimarães, Carla ; Batista, Luiz Alberto ; Laks, Jerson ; Deslandes, Andrea Camaz</creator><creatorcontrib>de Oliveira Silva, Felipe ; Ferreira, José Vinícius ; Plácido, Jéssica ; Chagas, Daniel ; Praxedes, Jomilto ; Guimarães, Carla ; Batista, Luiz Alberto ; Laks, Jerson ; Deslandes, Andrea Camaz</creatorcontrib><description>Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments.</description><identifier>ISSN: 0531-5565</identifier><identifier>EISSN: 1873-6815</identifier><identifier>DOI: 10.1016/j.exger.2019.110816</identifier><identifier>PMID: 31862421</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Accidental Falls ; Aged ; Aged, 80 and over ; Alzheimer Disease - physiopathology ; Alzheimer's disease ; Cognitive Dysfunction - physiopathology ; Cross-Sectional Studies ; Diagnosis, Differential ; Dual-task ; Female ; Gait ; Gait Analysis - methods ; Humans ; Male ; Middle Aged ; Mild cognitive impairment ; Mobility ; Neuropsychological Tests ; Time and Motion Studies ; Velocity ; Video Recording - methods ; Walk Test - methods</subject><ispartof>Experimental gerontology, 2020-03, Vol.131, p.110816-110816, Article 110816</ispartof><rights>2019</rights><rights>Copyright © 2019. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-61c324da0fbd43de30d5111b9b061c3fbad7eaad6ea62907ee3b52afdeaeebbc3</citedby><cites>FETCH-LOGICAL-c359t-61c324da0fbd43de30d5111b9b061c3fbad7eaad6ea62907ee3b52afdeaeebbc3</cites><orcidid>0000-0002-1457-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0531556519304498$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31862421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira Silva, Felipe</creatorcontrib><creatorcontrib>Ferreira, José Vinícius</creatorcontrib><creatorcontrib>Plácido, Jéssica</creatorcontrib><creatorcontrib>Chagas, Daniel</creatorcontrib><creatorcontrib>Praxedes, Jomilto</creatorcontrib><creatorcontrib>Guimarães, Carla</creatorcontrib><creatorcontrib>Batista, Luiz Alberto</creatorcontrib><creatorcontrib>Laks, Jerson</creatorcontrib><creatorcontrib>Deslandes, Andrea Camaz</creatorcontrib><title>Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study</title><title>Experimental gerontology</title><addtitle>Exp Gerontol</addtitle><description>Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments.</description><subject>Accidental Falls</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - physiopathology</subject><subject>Alzheimer's disease</subject><subject>Cognitive Dysfunction - physiopathology</subject><subject>Cross-Sectional Studies</subject><subject>Diagnosis, Differential</subject><subject>Dual-task</subject><subject>Female</subject><subject>Gait</subject><subject>Gait Analysis - methods</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mild cognitive impairment</subject><subject>Mobility</subject><subject>Neuropsychological Tests</subject><subject>Time and Motion Studies</subject><subject>Velocity</subject><subject>Video Recording - methods</subject><subject>Walk Test - methods</subject><issn>0531-5565</issn><issn>1873-6815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9uEzEQxi0EomnhCZCQb_TQTe31rpNF4hBVpSBV4lLO1qw9m0zk3Q22E7o8BY-M0xSOnOYwv--bPx9j76SYSyH19XaOj2sM81LIZi6lWEr9gs3kcqEKvZT1SzYTtZJFXev6jJ3HuBVC6FLJ1-xMyaUuq1LO2O87oMRhAD9FivwnpQ0_kMNxHaDvMYWJWxi4o67DgEMiSMg3CD5tJo7eYfDTFe_JO27H9UCJDsip3wGFPuNX2drxlf-1QeoxfIjZKSJE_MhX3IYxxiKiTTTmBXhMeze9Ya868BHfPtcL9v3z7cPNl-L-293Xm9V9YVXdpEJLq8rKgehaVymHSrhaStk2rTi2uhbcAgGcRtBlIxaIqq1L6BwCYttadcEuT767MP7YY0ymp2jRexhw3EdTqrJZqKrSTUbVCX1aOGBndoF6CJORwhyjMFvzFIU5RmFOUWTV--cB-7ZH90_z9_cZ-HQCMJ95oCyPlnCw6Cjknxg30n8H_AHyaJ__</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>de Oliveira Silva, Felipe</creator><creator>Ferreira, José Vinícius</creator><creator>Plácido, Jéssica</creator><creator>Chagas, Daniel</creator><creator>Praxedes, Jomilto</creator><creator>Guimarães, Carla</creator><creator>Batista, Luiz Alberto</creator><creator>Laks, Jerson</creator><creator>Deslandes, Andrea Camaz</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1457-0480</orcidid></search><sort><creationdate>202003</creationdate><title>Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study</title><author>de Oliveira Silva, Felipe ; Ferreira, José Vinícius ; Plácido, Jéssica ; Chagas, Daniel ; Praxedes, Jomilto ; Guimarães, Carla ; Batista, Luiz Alberto ; Laks, Jerson ; Deslandes, Andrea Camaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-61c324da0fbd43de30d5111b9b061c3fbad7eaad6ea62907ee3b52afdeaeebbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidental Falls</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - physiopathology</topic><topic>Alzheimer's disease</topic><topic>Cognitive Dysfunction - physiopathology</topic><topic>Cross-Sectional Studies</topic><topic>Diagnosis, Differential</topic><topic>Dual-task</topic><topic>Female</topic><topic>Gait</topic><topic>Gait Analysis - methods</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mild cognitive impairment</topic><topic>Mobility</topic><topic>Neuropsychological Tests</topic><topic>Time and Motion Studies</topic><topic>Velocity</topic><topic>Video Recording - methods</topic><topic>Walk Test - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira Silva, Felipe</creatorcontrib><creatorcontrib>Ferreira, José Vinícius</creatorcontrib><creatorcontrib>Plácido, Jéssica</creatorcontrib><creatorcontrib>Chagas, Daniel</creatorcontrib><creatorcontrib>Praxedes, Jomilto</creatorcontrib><creatorcontrib>Guimarães, Carla</creatorcontrib><creatorcontrib>Batista, Luiz Alberto</creatorcontrib><creatorcontrib>Laks, Jerson</creatorcontrib><creatorcontrib>Deslandes, Andrea Camaz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental gerontology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira Silva, Felipe</au><au>Ferreira, José Vinícius</au><au>Plácido, Jéssica</au><au>Chagas, Daniel</au><au>Praxedes, Jomilto</au><au>Guimarães, Carla</au><au>Batista, Luiz Alberto</au><au>Laks, Jerson</au><au>Deslandes, Andrea Camaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study</atitle><jtitle>Experimental gerontology</jtitle><addtitle>Exp Gerontol</addtitle><date>2020-03</date><risdate>2020</risdate><volume>131</volume><spage>110816</spage><epage>110816</epage><pages>110816-110816</pages><artnum>110816</artnum><issn>0531-5565</issn><eissn>1873-6815</eissn><abstract>Gait parameters have been investigated as an additional tool for differential diagnosis in neurocognitive disorders, especially among healthy elderly (HE), those with mild cognitive impairment (MCI), and Alzheimer's disease (AD) patients. A videogrammetry system could be used as a low-cost and clinically practical equipment to capture and analyze gait in older adults. The aim of this study was to select the better gait parameter to differentiate these groups among different motor test conditions with videogrammetry analyses. Different motor conditions were used in three specific assessments: 10-meter walk test (10mWT), timed up and go test (TUGT), and treadmill walk test (TWT). These tasks were compared among HE (n=17), MCI (n=23), and AD (n=23) groups. One-way ANOVA, Kruskal-Wallis, and Bonferroni post-hoc tests were used to compare variables among groups. Then, an effect size (ES) and a linear regression analysis were calculated. The gait parameters showed significant differences among groups in all conditions, but not in TWT. Controlled by confounding variables, the gait velocity in 10mWT at usual speed, and TUGT in dual-task condition, predicts 39% and 53% of the difference among diagnoses, respectively. Finally, these results suggest that a low-cost and practical video analysis could be able to differentiate HE, those with MCI, and AD patients in clinical assessments.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>31862421</pmid><doi>10.1016/j.exger.2019.110816</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1457-0480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0531-5565 |
ispartof | Experimental gerontology, 2020-03, Vol.131, p.110816-110816, Article 110816 |
issn | 0531-5565 1873-6815 |
language | eng |
recordid | cdi_proquest_miscellaneous_2329734469 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Accidental Falls Aged Aged, 80 and over Alzheimer Disease - physiopathology Alzheimer's disease Cognitive Dysfunction - physiopathology Cross-Sectional Studies Diagnosis, Differential Dual-task Female Gait Gait Analysis - methods Humans Male Middle Aged Mild cognitive impairment Mobility Neuropsychological Tests Time and Motion Studies Velocity Video Recording - methods Walk Test - methods |
title | Gait analysis with videogrammetry can differentiate healthy elderly, mild cognitive impairment, and Alzheimer's disease: A cross-sectional study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gait%20analysis%20with%20videogrammetry%20can%20differentiate%20healthy%20elderly,%20mild%20cognitive%20impairment,%20and%20Alzheimer's%20disease:%20A%20cross-sectional%20study&rft.jtitle=Experimental%20gerontology&rft.au=de%20Oliveira%20Silva,%20Felipe&rft.date=2020-03&rft.volume=131&rft.spage=110816&rft.epage=110816&rft.pages=110816-110816&rft.artnum=110816&rft.issn=0531-5565&rft.eissn=1873-6815&rft_id=info:doi/10.1016/j.exger.2019.110816&rft_dat=%3Cproquest_cross%3E2329734469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329734469&rft_id=info:pmid/31862421&rft_els_id=S0531556519304498&rfr_iscdi=true |