Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes
Cyclometalated Ir(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To suppor...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2020-02, Vol.16 (2), p.1188-1199 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1199 |
---|---|
container_issue | 2 |
container_start_page | 1188 |
container_title | Journal of chemical theory and computation |
container_volume | 16 |
creator | Cazzaniga, Marco Cargnoni, Fausto Penconi, Marta Bossi, Alberto Ceresoli, Davide |
description | Cyclometalated Ir(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange–correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe–Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir(ppy)3 and performed GW-BSE simulations starting from different DFT exchange–correlation potentials. |
doi_str_mv | 10.1021/acs.jctc.9b00763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2329729052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354821627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-540b0b044701a3c5785a45f83eb3525f53c4a29e520f2f1d1d64138c757e02a53</originalsourceid><addsrcrecordid>eNp1kU1L5TAUhsPg4Ne4n9UQcKNgr_nsx1KLOgVFF866pOkp9pI2nSQFu_SfG--9uhgYskg4PO97Ag9CPylZUcLopdJ-tdZBr4qGkCzl39AhlaJIipSle19vmh-gI-_XhHAuGN9HB5zmKWEFO0RvVw2uxj70Fj-ocUmubbvgJ3Bhdo2K0xE_v4B1Cy6V0bPZjDy2HQ4vgG8M6ODs2GusxhY_TqHXyuAnZ6fY0MMGLBdt7ABBxTC0uHJnVVWd49IOk4FX8D_Q904ZDye7-xj9ub15Ln8n9493VXl1nyiWFSGRgjTxCJERqriWWS6VkF3OoeGSyU5yLRQrQDLSsY62tE0F5bnOZAaEKcmP0dm2d3L27ww-1EPvNRijRrCzrxlnRcYKIllET_9B13Z2Y_xdpKTIGU1ZFimypbSz3jvo6sn1g3JLTUn9oaeOeuoPPfVOT4z82hXPzQDtV-DTRwQutsAm-rn0v33v8c-azw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354821627</pqid></control><display><type>article</type><title>Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes</title><source>ACS Publications</source><creator>Cazzaniga, Marco ; Cargnoni, Fausto ; Penconi, Marta ; Bossi, Alberto ; Ceresoli, Davide</creator><creatorcontrib>Cazzaniga, Marco ; Cargnoni, Fausto ; Penconi, Marta ; Bossi, Alberto ; Ceresoli, Davide</creatorcontrib><description>Cyclometalated Ir(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange–correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe–Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir(ppy)3 and performed GW-BSE simulations starting from different DFT exchange–correlation potentials.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b00763</identifier><identifier>PMID: 31860292</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption spectra ; Bethe-Salpeter equation ; Density functional theory ; Eigenvalues ; Emission spectra ; Emitters ; Exchanging ; Mathematical analysis ; Optical properties ; Organic chemistry ; Organic light emitting diodes ; Perturbation methods ; Perturbation theory ; Quantum chemistry ; Time dependence ; Transition metals</subject><ispartof>Journal of chemical theory and computation, 2020-02, Vol.16 (2), p.1188-1199</ispartof><rights>Copyright American Chemical Society Feb 11, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-540b0b044701a3c5785a45f83eb3525f53c4a29e520f2f1d1d64138c757e02a53</citedby><cites>FETCH-LOGICAL-a279t-540b0b044701a3c5785a45f83eb3525f53c4a29e520f2f1d1d64138c757e02a53</cites><orcidid>0000-0001-7459-7354 ; 0000-0002-8197-6384 ; 0000-0002-9831-0773 ; 0000-0001-9252-6218 ; 0000-0002-8473-0574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b00763$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b00763$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31860292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cazzaniga, Marco</creatorcontrib><creatorcontrib>Cargnoni, Fausto</creatorcontrib><creatorcontrib>Penconi, Marta</creatorcontrib><creatorcontrib>Bossi, Alberto</creatorcontrib><creatorcontrib>Ceresoli, Davide</creatorcontrib><title>Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Cyclometalated Ir(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange–correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe–Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir(ppy)3 and performed GW-BSE simulations starting from different DFT exchange–correlation potentials.</description><subject>Absorption spectra</subject><subject>Bethe-Salpeter equation</subject><subject>Density functional theory</subject><subject>Eigenvalues</subject><subject>Emission spectra</subject><subject>Emitters</subject><subject>Exchanging</subject><subject>Mathematical analysis</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Organic light emitting diodes</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Quantum chemistry</subject><subject>Time dependence</subject><subject>Transition metals</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1L5TAUhsPg4Ne4n9UQcKNgr_nsx1KLOgVFF866pOkp9pI2nSQFu_SfG--9uhgYskg4PO97Ag9CPylZUcLopdJ-tdZBr4qGkCzl39AhlaJIipSle19vmh-gI-_XhHAuGN9HB5zmKWEFO0RvVw2uxj70Fj-ocUmubbvgJ3Bhdo2K0xE_v4B1Cy6V0bPZjDy2HQ4vgG8M6ODs2GusxhY_TqHXyuAnZ6fY0MMGLBdt7ABBxTC0uHJnVVWd49IOk4FX8D_Q904ZDye7-xj9ub15Ln8n9493VXl1nyiWFSGRgjTxCJERqriWWS6VkF3OoeGSyU5yLRQrQDLSsY62tE0F5bnOZAaEKcmP0dm2d3L27ww-1EPvNRijRrCzrxlnRcYKIllET_9B13Z2Y_xdpKTIGU1ZFimypbSz3jvo6sn1g3JLTUn9oaeOeuoPPfVOT4z82hXPzQDtV-DTRwQutsAm-rn0v33v8c-azw</recordid><startdate>20200211</startdate><enddate>20200211</enddate><creator>Cazzaniga, Marco</creator><creator>Cargnoni, Fausto</creator><creator>Penconi, Marta</creator><creator>Bossi, Alberto</creator><creator>Ceresoli, Davide</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7459-7354</orcidid><orcidid>https://orcid.org/0000-0002-8197-6384</orcidid><orcidid>https://orcid.org/0000-0002-9831-0773</orcidid><orcidid>https://orcid.org/0000-0001-9252-6218</orcidid><orcidid>https://orcid.org/0000-0002-8473-0574</orcidid></search><sort><creationdate>20200211</creationdate><title>Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes</title><author>Cazzaniga, Marco ; Cargnoni, Fausto ; Penconi, Marta ; Bossi, Alberto ; Ceresoli, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-540b0b044701a3c5785a45f83eb3525f53c4a29e520f2f1d1d64138c757e02a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Bethe-Salpeter equation</topic><topic>Density functional theory</topic><topic>Eigenvalues</topic><topic>Emission spectra</topic><topic>Emitters</topic><topic>Exchanging</topic><topic>Mathematical analysis</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Organic light emitting diodes</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Quantum chemistry</topic><topic>Time dependence</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cazzaniga, Marco</creatorcontrib><creatorcontrib>Cargnoni, Fausto</creatorcontrib><creatorcontrib>Penconi, Marta</creatorcontrib><creatorcontrib>Bossi, Alberto</creatorcontrib><creatorcontrib>Ceresoli, Davide</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cazzaniga, Marco</au><au>Cargnoni, Fausto</au><au>Penconi, Marta</au><au>Bossi, Alberto</au><au>Ceresoli, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-02-11</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>1188</spage><epage>1199</epage><pages>1188-1199</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Cyclometalated Ir(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange–correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe–Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir(ppy)3 and performed GW-BSE simulations starting from different DFT exchange–correlation potentials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31860292</pmid><doi>10.1021/acs.jctc.9b00763</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7459-7354</orcidid><orcidid>https://orcid.org/0000-0002-8197-6384</orcidid><orcidid>https://orcid.org/0000-0002-9831-0773</orcidid><orcidid>https://orcid.org/0000-0001-9252-6218</orcidid><orcidid>https://orcid.org/0000-0002-8473-0574</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2020-02, Vol.16 (2), p.1188-1199 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2329729052 |
source | ACS Publications |
subjects | Absorption spectra Bethe-Salpeter equation Density functional theory Eigenvalues Emission spectra Emitters Exchanging Mathematical analysis Optical properties Organic chemistry Organic light emitting diodes Perturbation methods Perturbation theory Quantum chemistry Time dependence Transition metals |
title | Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20Initio%20Many-Body%20Perturbation%20Theory%20Calculations%20of%20the%20Electronic%20and%20Optical%20Properties%20of%20Cyclometalated%20Ir(III)%20Complexes&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Cazzaniga,%20Marco&rft.date=2020-02-11&rft.volume=16&rft.issue=2&rft.spage=1188&rft.epage=1199&rft.pages=1188-1199&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b00763&rft_dat=%3Cproquest_cross%3E2354821627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354821627&rft_id=info:pmid/31860292&rfr_iscdi=true |