Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes

Cyclometalated Ir­(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To suppor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2020-02, Vol.16 (2), p.1188-1199
Hauptverfasser: Cazzaniga, Marco, Cargnoni, Fausto, Penconi, Marta, Bossi, Alberto, Ceresoli, Davide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1199
container_issue 2
container_start_page 1188
container_title Journal of chemical theory and computation
container_volume 16
creator Cazzaniga, Marco
Cargnoni, Fausto
Penconi, Marta
Bossi, Alberto
Ceresoli, Davide
description Cyclometalated Ir­(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange–correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe–Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir­(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir­(ppy)3 and performed GW-BSE simulations starting from different DFT exchange–correlation potentials.
doi_str_mv 10.1021/acs.jctc.9b00763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2329729052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354821627</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-540b0b044701a3c5785a45f83eb3525f53c4a29e520f2f1d1d64138c757e02a53</originalsourceid><addsrcrecordid>eNp1kU1L5TAUhsPg4Ne4n9UQcKNgr_nsx1KLOgVFF866pOkp9pI2nSQFu_SfG--9uhgYskg4PO97Ag9CPylZUcLopdJ-tdZBr4qGkCzl39AhlaJIipSle19vmh-gI-_XhHAuGN9HB5zmKWEFO0RvVw2uxj70Fj-ocUmubbvgJ3Bhdo2K0xE_v4B1Cy6V0bPZjDy2HQ4vgG8M6ODs2GusxhY_TqHXyuAnZ6fY0MMGLBdt7ABBxTC0uHJnVVWd49IOk4FX8D_Q904ZDye7-xj9ub15Ln8n9493VXl1nyiWFSGRgjTxCJERqriWWS6VkF3OoeGSyU5yLRQrQDLSsY62tE0F5bnOZAaEKcmP0dm2d3L27ww-1EPvNRijRrCzrxlnRcYKIllET_9B13Z2Y_xdpKTIGU1ZFimypbSz3jvo6sn1g3JLTUn9oaeOeuoPPfVOT4z82hXPzQDtV-DTRwQutsAm-rn0v33v8c-azw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354821627</pqid></control><display><type>article</type><title>Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes</title><source>ACS Publications</source><creator>Cazzaniga, Marco ; Cargnoni, Fausto ; Penconi, Marta ; Bossi, Alberto ; Ceresoli, Davide</creator><creatorcontrib>Cazzaniga, Marco ; Cargnoni, Fausto ; Penconi, Marta ; Bossi, Alberto ; Ceresoli, Davide</creatorcontrib><description>Cyclometalated Ir­(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange–correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe–Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir­(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir­(ppy)3 and performed GW-BSE simulations starting from different DFT exchange–correlation potentials.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b00763</identifier><identifier>PMID: 31860292</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption spectra ; Bethe-Salpeter equation ; Density functional theory ; Eigenvalues ; Emission spectra ; Emitters ; Exchanging ; Mathematical analysis ; Optical properties ; Organic chemistry ; Organic light emitting diodes ; Perturbation methods ; Perturbation theory ; Quantum chemistry ; Time dependence ; Transition metals</subject><ispartof>Journal of chemical theory and computation, 2020-02, Vol.16 (2), p.1188-1199</ispartof><rights>Copyright American Chemical Society Feb 11, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-540b0b044701a3c5785a45f83eb3525f53c4a29e520f2f1d1d64138c757e02a53</citedby><cites>FETCH-LOGICAL-a279t-540b0b044701a3c5785a45f83eb3525f53c4a29e520f2f1d1d64138c757e02a53</cites><orcidid>0000-0001-7459-7354 ; 0000-0002-8197-6384 ; 0000-0002-9831-0773 ; 0000-0001-9252-6218 ; 0000-0002-8473-0574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.9b00763$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.9b00763$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31860292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cazzaniga, Marco</creatorcontrib><creatorcontrib>Cargnoni, Fausto</creatorcontrib><creatorcontrib>Penconi, Marta</creatorcontrib><creatorcontrib>Bossi, Alberto</creatorcontrib><creatorcontrib>Ceresoli, Davide</creatorcontrib><title>Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Cyclometalated Ir­(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange–correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe–Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir­(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir­(ppy)3 and performed GW-BSE simulations starting from different DFT exchange–correlation potentials.</description><subject>Absorption spectra</subject><subject>Bethe-Salpeter equation</subject><subject>Density functional theory</subject><subject>Eigenvalues</subject><subject>Emission spectra</subject><subject>Emitters</subject><subject>Exchanging</subject><subject>Mathematical analysis</subject><subject>Optical properties</subject><subject>Organic chemistry</subject><subject>Organic light emitting diodes</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Quantum chemistry</subject><subject>Time dependence</subject><subject>Transition metals</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kU1L5TAUhsPg4Ne4n9UQcKNgr_nsx1KLOgVFF866pOkp9pI2nSQFu_SfG--9uhgYskg4PO97Ag9CPylZUcLopdJ-tdZBr4qGkCzl39AhlaJIipSle19vmh-gI-_XhHAuGN9HB5zmKWEFO0RvVw2uxj70Fj-ocUmubbvgJ3Bhdo2K0xE_v4B1Cy6V0bPZjDy2HQ4vgG8M6ODs2GusxhY_TqHXyuAnZ6fY0MMGLBdt7ABBxTC0uHJnVVWd49IOk4FX8D_Q904ZDye7-xj9ub15Ln8n9493VXl1nyiWFSGRgjTxCJERqriWWS6VkF3OoeGSyU5yLRQrQDLSsY62tE0F5bnOZAaEKcmP0dm2d3L27ww-1EPvNRijRrCzrxlnRcYKIllET_9B13Z2Y_xdpKTIGU1ZFimypbSz3jvo6sn1g3JLTUn9oaeOeuoPPfVOT4z82hXPzQDtV-DTRwQutsAm-rn0v33v8c-azw</recordid><startdate>20200211</startdate><enddate>20200211</enddate><creator>Cazzaniga, Marco</creator><creator>Cargnoni, Fausto</creator><creator>Penconi, Marta</creator><creator>Bossi, Alberto</creator><creator>Ceresoli, Davide</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7459-7354</orcidid><orcidid>https://orcid.org/0000-0002-8197-6384</orcidid><orcidid>https://orcid.org/0000-0002-9831-0773</orcidid><orcidid>https://orcid.org/0000-0001-9252-6218</orcidid><orcidid>https://orcid.org/0000-0002-8473-0574</orcidid></search><sort><creationdate>20200211</creationdate><title>Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes</title><author>Cazzaniga, Marco ; Cargnoni, Fausto ; Penconi, Marta ; Bossi, Alberto ; Ceresoli, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-540b0b044701a3c5785a45f83eb3525f53c4a29e520f2f1d1d64138c757e02a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Bethe-Salpeter equation</topic><topic>Density functional theory</topic><topic>Eigenvalues</topic><topic>Emission spectra</topic><topic>Emitters</topic><topic>Exchanging</topic><topic>Mathematical analysis</topic><topic>Optical properties</topic><topic>Organic chemistry</topic><topic>Organic light emitting diodes</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Quantum chemistry</topic><topic>Time dependence</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cazzaniga, Marco</creatorcontrib><creatorcontrib>Cargnoni, Fausto</creatorcontrib><creatorcontrib>Penconi, Marta</creatorcontrib><creatorcontrib>Bossi, Alberto</creatorcontrib><creatorcontrib>Ceresoli, Davide</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cazzaniga, Marco</au><au>Cargnoni, Fausto</au><au>Penconi, Marta</au><au>Bossi, Alberto</au><au>Ceresoli, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-02-11</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>1188</spage><epage>1199</epage><pages>1188-1199</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Cyclometalated Ir­(III) compounds are the preferred choice as organic emitters in organic light-emitting diodes. In practice, the presence of the transition metal surrounded by carefully designed ligands allows fine-tuning of the emission frequency as well as good efficiency of the device. To support the development of new compounds, experimental measurements are generally compared with absorption and emission spectra obtained from ab initio calculations. The standard approach for these calculations is time-dependent density functional theory (TDDFT) with a hybrid exchange–correlation functional like B3LYP. Because of the size of these compounds, the application of more complex quantum chemistry approaches can be challenging. In this work, we used many-body perturbation theory approaches, in particular the GW approximation with the Bethe–Salpeter equation (BSE) implemented in Gaussian basis sets, to calculate the quasiparticle properties and the absorption spectra of six cyclometalated Ir­(III) complexes, going beyond TDDFT. In the presented results, we compared standard TDDFT simulations with BSE calculations performed on top of perturbative G0W0 and accounting for eigenvalue self-consistency. Moreover, in order to investigate in detail the effect of the DFT starting point, we concentrated on Ir­(ppy)3 and performed GW-BSE simulations starting from different DFT exchange–correlation potentials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31860292</pmid><doi>10.1021/acs.jctc.9b00763</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7459-7354</orcidid><orcidid>https://orcid.org/0000-0002-8197-6384</orcidid><orcidid>https://orcid.org/0000-0002-9831-0773</orcidid><orcidid>https://orcid.org/0000-0001-9252-6218</orcidid><orcidid>https://orcid.org/0000-0002-8473-0574</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2020-02, Vol.16 (2), p.1188-1199
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2329729052
source ACS Publications
subjects Absorption spectra
Bethe-Salpeter equation
Density functional theory
Eigenvalues
Emission spectra
Emitters
Exchanging
Mathematical analysis
Optical properties
Organic chemistry
Organic light emitting diodes
Perturbation methods
Perturbation theory
Quantum chemistry
Time dependence
Transition metals
title Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20Initio%20Many-Body%20Perturbation%20Theory%20Calculations%20of%20the%20Electronic%20and%20Optical%20Properties%20of%20Cyclometalated%20Ir(III)%20Complexes&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Cazzaniga,%20Marco&rft.date=2020-02-11&rft.volume=16&rft.issue=2&rft.spage=1188&rft.epage=1199&rft.pages=1188-1199&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b00763&rft_dat=%3Cproquest_cross%3E2354821627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354821627&rft_id=info:pmid/31860292&rfr_iscdi=true