Microplasmas for Advanced Materials and Devices

Microplasmas are low‐temperature plasmas that feature microscale dimensions and a unique high‐energy‐density and a nonequilibrium reactive environment, which makes them promising for the fabrication of advanced nanomaterials and devices for diverse applications. Here, recent microplasma applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-05, Vol.32 (18), p.e1905508-n/a
Hauptverfasser: Chiang, Wei‐Hung, Mariotti, Davide, Sankaran, R. Mohan, Eden, J. Gary, Ostrikov, Kostya (Ken)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e1905508
container_title Advanced materials (Weinheim)
container_volume 32
creator Chiang, Wei‐Hung
Mariotti, Davide
Sankaran, R. Mohan
Eden, J. Gary
Ostrikov, Kostya (Ken)
description Microplasmas are low‐temperature plasmas that feature microscale dimensions and a unique high‐energy‐density and a nonequilibrium reactive environment, which makes them promising for the fabrication of advanced nanomaterials and devices for diverse applications. Here, recent microplasma applications are examined, spanning from high‐throughput, printing‐technology‐compatible synthesis of nanocrystalline particles of common materials types, to water purification and optoelectronic devices. Microplasmas combined with gaseous and/or liquid media at low temperatures and atmospheric pressure open new ways to form advanced functional materials and devices. Specific examples include gas‐phase, substrate‐free, plasma‐liquid, and surface‐supported synthesis of metallic, semiconducting, metal oxide, and carbon‐based nanomaterials. Representative applications of microplasmas of particular importance to materials science and technology include light sources for multipurpose, efficient VUV/UV light sources for photochemical materials processing and spectroscopic materials analysis, surface disinfection, water purification, active electromagnetic devices based on artificial microplasma optical materials, and other devices and systems including the plasma transistor. The current limitations and future opportunities for microplasma applications in materials related fields are highlighted. Microplasmas with exotic high‐energy‐density and nonequilibrium features are highly promising for the development of advanced materials and devices. The unique and useful properties of microplasmas, recent progress in nanomaterials production, and commercial applications are reviewed. The analysis may help guide rational synthesis of advanced functional materials and design of plasma devices in the future to meet the emerging demands in various fields.
doi_str_mv 10.1002/adma.201905508
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2328754155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2328754155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5168-be04185fc7500a9fa79ae6b685dfac79f6dee0146625ffa3f81360bf239eeb263</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlavHmXBi5dtJ8kmmxyX1i9o8aLnkN2dwJb9qJu20n9vSmsFL54GhmeemXkJuaUwpgBsYsvGjhlQDUKAOiNDKhiNE9DinAxBcxFrmagBufJ-CQBagrwkA06VSIDxIZksqqLvVrX1jfWR6_ooK7e2LbCMFnaNfWVrH9m2jGa4rQr01-TChRbeHOuIfDw9vk9f4vnb8-s0m8eFoFLFOUISdrgiFQBWO5tqizKXSpTOFql2skQEmkjJhHOWO0W5hNwxrhFzJvmIPBy8q7773KBfm6byBda1bbHbeMM4U6lIqBABvf-DLrtN34brAqVTrYWQKlDjAxXe9b5HZ1Z91dh-ZyiYfZRmH6U5RRkG7o7aTd5gecJ_sguAPgBfVY27f3Qmmy2yX_k3K8B-EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397995568</pqid></control><display><type>article</type><title>Microplasmas for Advanced Materials and Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chiang, Wei‐Hung ; Mariotti, Davide ; Sankaran, R. Mohan ; Eden, J. Gary ; Ostrikov, Kostya (Ken)</creator><creatorcontrib>Chiang, Wei‐Hung ; Mariotti, Davide ; Sankaran, R. Mohan ; Eden, J. Gary ; Ostrikov, Kostya (Ken)</creatorcontrib><description>Microplasmas are low‐temperature plasmas that feature microscale dimensions and a unique high‐energy‐density and a nonequilibrium reactive environment, which makes them promising for the fabrication of advanced nanomaterials and devices for diverse applications. Here, recent microplasma applications are examined, spanning from high‐throughput, printing‐technology‐compatible synthesis of nanocrystalline particles of common materials types, to water purification and optoelectronic devices. Microplasmas combined with gaseous and/or liquid media at low temperatures and atmospheric pressure open new ways to form advanced functional materials and devices. Specific examples include gas‐phase, substrate‐free, plasma‐liquid, and surface‐supported synthesis of metallic, semiconducting, metal oxide, and carbon‐based nanomaterials. Representative applications of microplasmas of particular importance to materials science and technology include light sources for multipurpose, efficient VUV/UV light sources for photochemical materials processing and spectroscopic materials analysis, surface disinfection, water purification, active electromagnetic devices based on artificial microplasma optical materials, and other devices and systems including the plasma transistor. The current limitations and future opportunities for microplasma applications in materials related fields are highlighted. Microplasmas with exotic high‐energy‐density and nonequilibrium features are highly promising for the development of advanced materials and devices. The unique and useful properties of microplasmas, recent progress in nanomaterials production, and commercial applications are reviewed. The analysis may help guide rational synthesis of advanced functional materials and design of plasma devices in the future to meet the emerging demands in various fields.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201905508</identifier><identifier>PMID: 31854023</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Devices ; Functional materials ; Light sources ; Low temperature ; materials and devices ; Materials processing ; Materials science ; Metal oxides ; Microplasmas ; Nanomaterials ; nanoscale synthesis ; Optical materials ; Optoelectronic devices ; Plasmas (physics) ; Reactive environments ; Substrates ; Synthesis ; Transistors ; Ultraviolet radiation ; Water purification</subject><ispartof>Advanced materials (Weinheim), 2020-05, Vol.32 (18), p.e1905508-n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 The Authors. Published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5168-be04185fc7500a9fa79ae6b685dfac79f6dee0146625ffa3f81360bf239eeb263</citedby><cites>FETCH-LOGICAL-c5168-be04185fc7500a9fa79ae6b685dfac79f6dee0146625ffa3f81360bf239eeb263</cites><orcidid>0000-0001-8672-9297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201905508$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201905508$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31854023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiang, Wei‐Hung</creatorcontrib><creatorcontrib>Mariotti, Davide</creatorcontrib><creatorcontrib>Sankaran, R. Mohan</creatorcontrib><creatorcontrib>Eden, J. Gary</creatorcontrib><creatorcontrib>Ostrikov, Kostya (Ken)</creatorcontrib><title>Microplasmas for Advanced Materials and Devices</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Microplasmas are low‐temperature plasmas that feature microscale dimensions and a unique high‐energy‐density and a nonequilibrium reactive environment, which makes them promising for the fabrication of advanced nanomaterials and devices for diverse applications. Here, recent microplasma applications are examined, spanning from high‐throughput, printing‐technology‐compatible synthesis of nanocrystalline particles of common materials types, to water purification and optoelectronic devices. Microplasmas combined with gaseous and/or liquid media at low temperatures and atmospheric pressure open new ways to form advanced functional materials and devices. Specific examples include gas‐phase, substrate‐free, plasma‐liquid, and surface‐supported synthesis of metallic, semiconducting, metal oxide, and carbon‐based nanomaterials. Representative applications of microplasmas of particular importance to materials science and technology include light sources for multipurpose, efficient VUV/UV light sources for photochemical materials processing and spectroscopic materials analysis, surface disinfection, water purification, active electromagnetic devices based on artificial microplasma optical materials, and other devices and systems including the plasma transistor. The current limitations and future opportunities for microplasma applications in materials related fields are highlighted. Microplasmas with exotic high‐energy‐density and nonequilibrium features are highly promising for the development of advanced materials and devices. The unique and useful properties of microplasmas, recent progress in nanomaterials production, and commercial applications are reviewed. The analysis may help guide rational synthesis of advanced functional materials and design of plasma devices in the future to meet the emerging demands in various fields.</description><subject>Devices</subject><subject>Functional materials</subject><subject>Light sources</subject><subject>Low temperature</subject><subject>materials and devices</subject><subject>Materials processing</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>Microplasmas</subject><subject>Nanomaterials</subject><subject>nanoscale synthesis</subject><subject>Optical materials</subject><subject>Optoelectronic devices</subject><subject>Plasmas (physics)</subject><subject>Reactive environments</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Transistors</subject><subject>Ultraviolet radiation</subject><subject>Water purification</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1LAzEQhoMotlavHmXBi5dtJ8kmmxyX1i9o8aLnkN2dwJb9qJu20n9vSmsFL54GhmeemXkJuaUwpgBsYsvGjhlQDUKAOiNDKhiNE9DinAxBcxFrmagBufJ-CQBagrwkA06VSIDxIZksqqLvVrX1jfWR6_ooK7e2LbCMFnaNfWVrH9m2jGa4rQr01-TChRbeHOuIfDw9vk9f4vnb8-s0m8eFoFLFOUISdrgiFQBWO5tqizKXSpTOFql2skQEmkjJhHOWO0W5hNwxrhFzJvmIPBy8q7773KBfm6byBda1bbHbeMM4U6lIqBABvf-DLrtN34brAqVTrYWQKlDjAxXe9b5HZ1Z91dh-ZyiYfZRmH6U5RRkG7o7aTd5gecJ_sguAPgBfVY27f3Qmmy2yX_k3K8B-EQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Chiang, Wei‐Hung</creator><creator>Mariotti, Davide</creator><creator>Sankaran, R. Mohan</creator><creator>Eden, J. Gary</creator><creator>Ostrikov, Kostya (Ken)</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid></search><sort><creationdate>20200501</creationdate><title>Microplasmas for Advanced Materials and Devices</title><author>Chiang, Wei‐Hung ; Mariotti, Davide ; Sankaran, R. Mohan ; Eden, J. Gary ; Ostrikov, Kostya (Ken)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5168-be04185fc7500a9fa79ae6b685dfac79f6dee0146625ffa3f81360bf239eeb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Devices</topic><topic>Functional materials</topic><topic>Light sources</topic><topic>Low temperature</topic><topic>materials and devices</topic><topic>Materials processing</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>Microplasmas</topic><topic>Nanomaterials</topic><topic>nanoscale synthesis</topic><topic>Optical materials</topic><topic>Optoelectronic devices</topic><topic>Plasmas (physics)</topic><topic>Reactive environments</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Transistors</topic><topic>Ultraviolet radiation</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Wei‐Hung</creatorcontrib><creatorcontrib>Mariotti, Davide</creatorcontrib><creatorcontrib>Sankaran, R. Mohan</creatorcontrib><creatorcontrib>Eden, J. Gary</creatorcontrib><creatorcontrib>Ostrikov, Kostya (Ken)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Wei‐Hung</au><au>Mariotti, Davide</au><au>Sankaran, R. Mohan</au><au>Eden, J. Gary</au><au>Ostrikov, Kostya (Ken)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microplasmas for Advanced Materials and Devices</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>18</issue><spage>e1905508</spage><epage>n/a</epage><pages>e1905508-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Microplasmas are low‐temperature plasmas that feature microscale dimensions and a unique high‐energy‐density and a nonequilibrium reactive environment, which makes them promising for the fabrication of advanced nanomaterials and devices for diverse applications. Here, recent microplasma applications are examined, spanning from high‐throughput, printing‐technology‐compatible synthesis of nanocrystalline particles of common materials types, to water purification and optoelectronic devices. Microplasmas combined with gaseous and/or liquid media at low temperatures and atmospheric pressure open new ways to form advanced functional materials and devices. Specific examples include gas‐phase, substrate‐free, plasma‐liquid, and surface‐supported synthesis of metallic, semiconducting, metal oxide, and carbon‐based nanomaterials. Representative applications of microplasmas of particular importance to materials science and technology include light sources for multipurpose, efficient VUV/UV light sources for photochemical materials processing and spectroscopic materials analysis, surface disinfection, water purification, active electromagnetic devices based on artificial microplasma optical materials, and other devices and systems including the plasma transistor. The current limitations and future opportunities for microplasma applications in materials related fields are highlighted. Microplasmas with exotic high‐energy‐density and nonequilibrium features are highly promising for the development of advanced materials and devices. The unique and useful properties of microplasmas, recent progress in nanomaterials production, and commercial applications are reviewed. The analysis may help guide rational synthesis of advanced functional materials and design of plasma devices in the future to meet the emerging demands in various fields.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31854023</pmid><doi>10.1002/adma.201905508</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-05, Vol.32 (18), p.e1905508-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2328754155
source Wiley Online Library Journals Frontfile Complete
subjects Devices
Functional materials
Light sources
Low temperature
materials and devices
Materials processing
Materials science
Metal oxides
Microplasmas
Nanomaterials
nanoscale synthesis
Optical materials
Optoelectronic devices
Plasmas (physics)
Reactive environments
Substrates
Synthesis
Transistors
Ultraviolet radiation
Water purification
title Microplasmas for Advanced Materials and Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microplasmas%20for%20Advanced%20Materials%20and%20Devices&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chiang,%20Wei%E2%80%90Hung&rft.date=2020-05-01&rft.volume=32&rft.issue=18&rft.spage=e1905508&rft.epage=n/a&rft.pages=e1905508-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201905508&rft_dat=%3Cproquest_cross%3E2328754155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397995568&rft_id=info:pmid/31854023&rfr_iscdi=true